Suppr超能文献

AFCNNet:使用心电信号的啁啾变换和深度卷积双向长短时记忆网络自动检测房颤

AFCNNet: Automated detection of AF using chirplet transform and deep convolutional bidirectional long short term memory network with ECG signals.

机构信息

Department of Electrical and Electronics Engineering, BITS-Pilani, Hyderabad Campus, Hyderabad, 500078, India.

Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India.

出版信息

Comput Biol Med. 2021 Oct;137:104783. doi: 10.1016/j.compbiomed.2021.104783. Epub 2021 Aug 24.

Abstract

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and is characterized by the heart's beating in an uncoordinated manner. In clinical studies, patients often do not have visible symptoms during AF, and hence it is harder to detect this cardiac ailment. Therefore, automated detection of AF using the electrocardiogram (ECG) signals can reduce the risk of stroke, coronary artery disease, and other cardiovascular complications. In this paper, a novel time-frequency domain deep learning-based approach is proposed to detect AF and classify terminating and non-terminating AF episodes using ECG signals. This approach involves evaluating the time-frequency representation (TFR) of ECG signals using the chirplet transform. The two-dimensional (2D) deep convolutional bidirectional long short-term memory (BLSTM) neural network model is used to detect and classify AF episodes using the time-frequency images of ECG signals. The proposed TFR based 2D deep learning approach is evaluated using the ECG signals from three public databases. Our developed approach has obtained an accuracy, sensitivity, and specificity of 99.18% (Confidence interval (CI) as [98.86, 99.49]), 99.17% (CI as [98.85 99.49]), and 99.18% (CI as [98.86 99.49]), respectively, with 10-fold cross-validation (CV) technique to detect AF automatically. The proposed approach also classified terminating and non-terminating AF episodes with an average accuracy of 75.86%. The average accuracy value obtained using the proposed approach is higher than the short-time Fourier transform (STFT), discrete-time continuous wavelet transform (DT-CWT), and Stockwell transform (ST) based time-frequency analysis methods with deep convolutional BLSTM models to detect AF. The proposed approach has better AF detection performance than the existing deep learning-based techniques using ECG signals from the MIT-BIH database.

摘要

心房颤动(AF)是最常见的心律失常类型,其特征是心脏不协调地跳动。在临床研究中,AF 患者通常在没有明显症状的情况下出现,因此更难发现这种心脏疾病。因此,使用心电图(ECG)信号自动检测 AF 可以降低中风、冠状动脉疾病和其他心血管并发症的风险。在本文中,提出了一种新颖的基于时频域深度学习的方法,使用 ECG 信号检测 AF 并对终止和非终止 AF 发作进行分类。该方法涉及使用啁啾变换评估 ECG 信号的时频表示(TFR)。二维(2D)深度卷积双向长短期记忆(BLSTM)神经网络模型用于使用 ECG 信号的时频图像检测和分类 AF 发作。所提出的基于 TFR 的 2D 深度学习方法使用三个公共数据库的 ECG 信号进行评估。我们开发的方法在使用 10 倍交叉验证(CV)技术自动检测 AF 时,获得了 99.18%(置信区间[98.86,99.49])的准确率、灵敏度和特异性,99.17%(置信区间[98.85,99.49])和 99.18%(置信区间[98.86,99.49]),分别。该方法还以平均准确率 75.86%对终止和非终止 AF 发作进行分类。使用所提出的方法获得的平均准确率值高于基于短时傅里叶变换(STFT)、离散时间连续小波变换(DT-CWT)和 Stockwell 变换(ST)的时频分析方法以及使用深度卷积 BLSTM 模型检测 AF 的方法。与使用 MIT-BIH 数据库的 ECG 信号的现有基于深度学习的技术相比,该方法具有更好的 AF 检测性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验