Suppr超能文献

评论“使用机器学习预测 C-N 交叉偶联反应性能”。

Comment on "Predicting reaction performance in C-N cross-coupling using machine learning".

机构信息

Department of Pharmaceutical Chemistry, Department of Bioengineering and Therapeutic Sciences, Institute for Neurodegenerative Diseases, and Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94143, USA.

出版信息

Science. 2018 Nov 16;362(6416). doi: 10.1126/science.aat8603.

Abstract

Ahneman (Reports, 13 April 2018) applied machine learning models to predict C-N cross-coupling reaction yields. The models use atomic, electronic, and vibrational descriptors as input features. However, the experimental design is insufficient to distinguish models trained on chemical features from those trained solely on random-valued features in retrospective and prospective test scenarios, thus failing classical controls in machine learning.

摘要

Ahneman(报道,2018 年 4 月 13 日)应用机器学习模型来预测 C-N 交叉偶联反应产率。这些模型使用原子、电子和振动描述符作为输入特征。然而,实验设计不足以区分在回顾性和前瞻性测试场景中基于化学特征训练的模型和仅基于随机值特征训练的模型,因此在机器学习中未能通过经典控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验