Suppr超能文献

在药物设计中纳入合成可及性:利用 AbbVie 长达 15 年的平行文库数据集预测铃木交叉偶联反应产率。

Incorporating Synthetic Accessibility in Drug Design: Predicting Reaction Yields of Suzuki Cross-Couplings by Leveraging AbbVie's 15-Year Parallel Library Data Set.

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States.

Advanced Chemistry Technologies Group, AbbVie, Inc., 1 N Waukegan Rd, North Chicago, Illinois 60064, United States.

出版信息

J Am Chem Soc. 2024 Jun 5;146(22):15070-15084. doi: 10.1021/jacs.4c00098. Epub 2024 May 20.

Abstract

Despite the increased use of computational tools to supplement medicinal chemists' expertise and intuition in drug design, predicting synthetic yields in medicinal chemistry endeavors remains an unsolved challenge. Existing design workflows could profoundly benefit from reaction yield prediction, as precious material waste could be reduced, and a greater number of relevant compounds could be delivered to advance the design, make, test, analyze (DMTA) cycle. In this work, we detail the evaluation of AbbVie's medicinal chemistry library data set to build machine learning models for the prediction of Suzuki coupling reaction yields. The combination of density functional theory (DFT)-derived features and Morgan fingerprints was identified to perform better than one-hot encoded baseline modeling, furnishing encouraging results. Overall, we observe modest generalization to unseen reactant structures within the 15-year retrospective library data set. Additionally, we compare predictions made by the model to those made by expert medicinal chemists, finding that the model can often predict both reaction success and reaction yields with greater accuracy. Finally, we demonstrate the application of this approach to suggest structurally and electronically similar building blocks to replace those predicted or observed to be unsuccessful prior to or after synthesis, respectively. The yield prediction model was used to select similar monomers predicted to have higher yields, resulting in greater synthesis efficiency of relevant drug-like molecules.

摘要

尽管越来越多地使用计算工具来补充药物化学家在药物设计方面的专业知识和直觉,但预测药物化学研究中的合成产率仍然是一个未解决的挑战。现有的设计工作流程可以从反应产率预测中受益良多,因为可以减少宝贵的材料浪费,并可以提供更多相关的化合物来推进设计、制造、测试、分析(DMTA)周期。在这项工作中,我们详细评估了 AbbVie 的药物化学库数据集,以建立用于预测铃木偶联反应产率的机器学习模型。事实证明,基于密度泛函理论 (DFT) 衍生特征和 Morgan 指纹的组合比单一编码基线建模表现更好,提供了令人鼓舞的结果。总的来说,我们观察到模型在 15 年的回溯库数据集中对未见反应物结构的概括能力相当有限。此外,我们将模型的预测与专家药物化学家的预测进行了比较,发现模型通常可以更准确地预测反应的成功和反应的产率。最后,我们展示了该方法在建议结构和电子上相似的构建块方面的应用,以分别取代预测或观察到在合成之前或之后不成功的构建块。产率预测模型用于选择预测具有更高产率的类似单体,从而提高相关类药物分子的合成效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e62f/11157529/8e85032e0600/ja4c00098_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验