Suppr超能文献

人工细胞中的液-液相分离

Liquid-liquid phase separation in artificial cells.

作者信息

Crowe Charles D, Keating Christine D

机构信息

Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Interface Focus. 2018 Oct 6;8(5):20180032. doi: 10.1098/rsfs.2018.0032. Epub 2018 Aug 17.

Abstract

Liquid-liquid phase separation (LLPS) in biology is a recently appreciated means of intracellular compartmentalization. Because the mechanisms driving phase separations are grounded in physical interactions, they can be recreated within less complex systems consisting of only a few simple components, to serve as artificial microcompartments. Within these simple systems, the effect of compartmentalization and microenvironments upon biological reactions and processes can be studied. This review will explore several approaches to incorporating LLPS as artificial cytoplasms and in artificial cells, including both segregative and associative phase separation.

摘要

生物学中的液-液相分离(LLPS)是一种最近才被认识到的细胞内区室化方式。由于驱动相分离的机制基于物理相互作用,因此可以在仅由几个简单成分组成的较简单系统中重现,以用作人工微区室。在这些简单系统中,可以研究区室化和微环境对生物反应和过程的影响。本综述将探讨几种将LLPS纳入人工细胞质和人工细胞的方法,包括分离性和缔合性相分离。

相似文献

1
Liquid-liquid phase separation in artificial cells.
Interface Focus. 2018 Oct 6;8(5):20180032. doi: 10.1098/rsfs.2018.0032. Epub 2018 Aug 17.
2
Exploring New Horizons in Liquid Compartmentalization via Microfluidics.
Biomacromolecules. 2021 May 10;22(5):1759-1769. doi: 10.1021/acs.biomac.0c01796. Epub 2021 Apr 9.
3
Membraneless Compartmentalization Facilitates Enzymatic Cascade Reactions and Reduces Substrate Inhibition.
ACS Appl Mater Interfaces. 2018 Sep 26;10(38):32782-32791. doi: 10.1021/acsami.8b07573. Epub 2018 Sep 14.
5
Multicompartmental coacervate-based protocell by spontaneous droplet evaporation.
Nat Commun. 2024 Feb 6;15(1):1107. doi: 10.1038/s41467-024-45411-y.
6
Pioneering artificial cell-like structures with DNA nanotechnology-based liquid-liquid phase separation.
Biophys Physicobiol. 2024 Jan 30;21(1):e210010. doi: 10.2142/biophysico.bppb-v21.0010. eCollection 2024.
7
Liquid-liquid phase separation of polymeric microdomains with tunable inner morphology: Mechanistic insights and applications.
J Colloid Interface Sci. 2019 Nov 15;556:74-82. doi: 10.1016/j.jcis.2019.08.015. Epub 2019 Aug 6.
8
Dynamic Control of Functional Coacervates in Synthetic Cells.
ACS Synth Biol. 2023 Jul 21;12(7):2168-2177. doi: 10.1021/acssynbio.3c00249. Epub 2023 Jun 19.
9
Liquid-Liquid Phase Separation in Crowded Environments.
Int J Mol Sci. 2020 Aug 17;21(16):5908. doi: 10.3390/ijms21165908.
10
Current methods for studying intracellular liquid-liquid phase separation.
Curr Top Membr. 2021;88:55-73. doi: 10.1016/bs.ctm.2021.09.003. Epub 2021 Oct 25.

引用本文的文献

1
Strategies and applications of synthetic cell communication.
Nat Chem Biol. 2025 Aug 26. doi: 10.1038/s41589-025-02002-2.
2
DNA Condensates via Entanglement of String-like Structures Based on Anisotropic Nanotetrahedra.
JACS Au. 2025 Jun 10;5(7):3249-3261. doi: 10.1021/jacsau.5c00421. eCollection 2025 Jul 28.
4
5
Modulation of Protein-Protein Interactions with Molecular Glues in a Synthetic Condensate Platform.
J Am Chem Soc. 2025 Feb 12;147(6):5386-5397. doi: 10.1021/jacs.4c17567. Epub 2025 Jan 28.
7
Liquid-liquid separation in gut immunity.
Front Immunol. 2024 Dec 10;15:1505123. doi: 10.3389/fimmu.2024.1505123. eCollection 2024.
9
Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function.
Commun Chem. 2024 Sep 30;7(1):223. doi: 10.1038/s42004-024-01308-x.
10
Minimal Peptide Sequences That Undergo Liquid-Liquid Phase Separation via Self-Coacervation or Complex Coacervation with ATP.
Biomacromolecules. 2024 Aug 12;25(8):5321-5331. doi: 10.1021/acs.biomac.4c00738. Epub 2024 Jul 27.

本文引用的文献

1
Stabilization of Water-in-Water Emulsions by Nanorods.
ACS Macro Lett. 2016 Mar 15;5(3):283-286. doi: 10.1021/acsmacrolett.5b00953. Epub 2016 Feb 9.
2
Biocatalyzed mineralization in an aqueous two-phase system: effect of background polymers and enzyme partitioning.
J Mater Chem B. 2013 Apr 7;1(13):1794-1803. doi: 10.1039/c3tb00550j. Epub 2013 Feb 8.
3
Self-transformation and structural reconfiguration in coacervate-based protocells.
Chem Sci. 2016 Sep 1;7(9):5879-5887. doi: 10.1039/c6sc00205f. Epub 2016 May 25.
4
A Molecular Grammar Governing the Driving Forces for Phase Separation of Prion-like RNA Binding Proteins.
Cell. 2018 Jul 26;174(3):688-699.e16. doi: 10.1016/j.cell.2018.06.006. Epub 2018 Jun 28.
5
Controlling compartmentalization by non-membrane-bound organelles.
Philos Trans R Soc Lond B Biol Sci. 2018 May 26;373(1747). doi: 10.1098/rstb.2017.0193.
6
Physical Principles and Extant Biology Reveal Roles for RNA-Containing Membraneless Compartments in Origins of Life Chemistry.
Biochemistry. 2018 May 1;57(17):2509-2519. doi: 10.1021/acs.biochem.8b00081. Epub 2018 Mar 21.
7
Bacterial microcompartments.
Nat Rev Microbiol. 2018 May;16(5):277-290. doi: 10.1038/nrmicro.2018.10. Epub 2018 Mar 5.
8
Oligonucleotide-Peptide Complexes: Phase Control by Hybridization.
J Am Chem Soc. 2018 Feb 7;140(5):1632-1638. doi: 10.1021/jacs.7b03567. Epub 2018 Jan 26.
10
Recent Progress in Micro/Nanoreactors toward the Creation of Artificial Organelles.
Adv Healthc Mater. 2018 Mar;7(5). doi: 10.1002/adhm.201700917. Epub 2017 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验