Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
Nat Commun. 2024 Oct 30;15(1):9368. doi: 10.1038/s41467-024-53699-z.
Liquid-liquid phase separation (LLPS) in living cells provides innovative pathways for synthetic compartmentalized catalytic systems. While LLPS has been explored for enhancing enzyme catalysis, its potential application to catalytic peptides remains unexplored. Here, we demonstrate the use of coacervation, a key LLPS feature, to constrain the conformational flexibility of catalytic peptides, resulting in structured domains that enhance peptide catalysis. Using the flexible catalytic peptide P7 as a model, we induce reversible biomolecular coacervates with structured peptide domains proficient in hydrolyzing phosphate ester molecules and selectively sequestering phosphorylated proteins. Remarkably, these coacervate-based microreactors exhibit a 15,000-fold increase in catalytic efficiency compared to soluble peptides. Our findings highlight the potential of a single peptide to induce coacervate formation, selectively recruit substrates, and mediate catalysis, enabling a simple design for low-complexity, single peptide-based compartments with broad implications. Moreover, LLPS emerges as a fundamental mechanism in the evolution of chemical functions, effectively managing conformational heterogeneity in short peptides and providing valuable insights into the evolution of enzyme activity and catalysis in prebiotic chemistry.
液-液相分离(LLPS)在活细胞中为合成分隔催化系统提供了创新途径。虽然已经探索了 LLPS 来增强酶催化,但它在催化肽中的潜在应用仍未被探索。在这里,我们展示了凝聚作用(LLPS 的一个关键特征)的应用,该作用可限制催化肽的构象灵活性,从而形成增强肽催化的结构化域。使用灵活的催化肽 P7 作为模型,我们诱导具有结构化肽域的可逆生物分子凝聚物,这些肽域擅长水解磷酸酯分子并选择性隔离磷酸化蛋白质。值得注意的是,与可溶性肽相比,这些凝聚物基微反应器的催化效率提高了 15000 倍。我们的研究结果强调了单个肽引发凝聚形成、选择性募集底物和介导催化的潜力,为具有广泛意义的低复杂性、基于单个肽的隔室提供了简单的设计。此外,LLPS 作为化学功能进化的基本机制出现,有效地管理短肽中的构象异质性,并为前生物化学中酶活性和催化的进化提供了有价值的见解。