Sanchez-Fernandez Adrian, Insua Ignacio, Montenegro Javier
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
Departamento de Enxeñaría Química, Universidade de Santaigo de Compostela, Santiago de Compostela, Spain.
Commun Chem. 2024 Sep 30;7(1):223. doi: 10.1038/s42004-024-01308-x.
As in natural cytoskeletons, the cooperative assembly of fibrillar networks can be hosted inside compartments to engineer biomimetic functions, such as mechanical actuation, transport, and reaction templating. Coacervates impose an optimal liquid-liquid phase separation within the aqueous continuum, functioning as membrane-less compartments that can organise such self-assembling processes as well as the exchange of information with their environment. Furthermore, biological fibrillation can often be controlled or assisted by intracellular compartments. Thus, the reconstitution of analogues of natural filaments in simplified artificial compartments, such as coacervates, offer a suitable model to unravel, mimic, and potentially exploit cellular functions. This perspective summarises the latest developments towards assembling fibrillar networks under confinement inside coacervates and related compartments, including a selection of examples ranging from biological to fully synthetic monomers. Comparative analysis between coacervates, lipid vesicles, and droplet emulsions showcases the interplay between supramolecular fibres and the boundaries of the corresponding compartment. Combining inspiration from natural systems and the custom properties of tailored synthetic fibrillators, rational monomer and compartment design will contribute towards engineering increasingly complex and more realistic artificial protocells.
与天然细胞骨架一样,纤维状网络的协同组装可以在隔室内进行,以构建仿生功能,如机械驱动、运输和反应模板化。凝聚层在水连续相中实现了最佳的液-液相分离,作为无膜隔室发挥作用,能够组织此类自组装过程以及与周围环境的信息交换。此外,生物纤维化通常可以由细胞内隔室控制或辅助。因此,在诸如凝聚层等简化的人工隔室内重建天然丝状类似物,为揭示、模拟和潜在利用细胞功能提供了一个合适的模型。本综述总结了在凝聚层和相关隔室内受限条件下组装纤维状网络的最新进展,包括从生物单体到全合成单体的一系列实例。对凝聚层、脂质囊泡和液滴乳液的比较分析展示了超分子纤维与相应隔室边界之间的相互作用。结合来自天然系统的灵感和定制合成纤维形成剂的定制特性,合理的单体和隔室设计将有助于构建越来越复杂、更逼真的人工原细胞。