Schmelling Nicolas M, Axmann Ilka M
Institute for Synthetic Microbiology, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany.
Interface Focus. 2018 Dec 6;8(6):20180038. doi: 10.1098/rsfs.2018.0038. Epub 2018 Oct 19.
Precisely timing the regulation of gene expression by anticipating recurring environmental changes is a fundamental part of global gene regulation. Circadian clocks are one form of this regulation, which is found in both eukaryotes and prokaryotes, providing a fitness advantage for these organisms. Whereas many different eukaryotic groups harbour circadian clocks, cyanobacteria are the only known oxygenic phototrophic prokaryotes to regulate large parts of their genes in a circadian fashion. A decade of intensive research on the mechanisms and functionality using computational and mathematical approaches in addition to the detailed biochemical and biophysical understanding make this the best understood circadian clock. Here, we summarize the findings and insights into various parts of the cyanobacterial circadian clock made by mathematical modelling. These findings have implications for eukaryotic circadian research as well as synthetic biology harnessing the power and efficiency of global gene regulation.
通过预测反复出现的环境变化来精确调控基因表达的时间,是全球基因调控的一个基本组成部分。昼夜节律钟是这种调控的一种形式,在真核生物和原核生物中都有发现,为这些生物体提供了适应性优势。虽然许多不同的真核生物类群都有昼夜节律钟,但蓝细菌是唯一已知的以昼夜节律方式调控其大部分基因的产氧光合原核生物。除了详细的生化和生物物理理解之外,十年来使用计算和数学方法对其机制和功能进行的深入研究,使这成为理解最透彻的昼夜节律钟。在这里,我们总结了通过数学建模对蓝细菌昼夜节律钟各个部分的研究发现和见解。这些发现对真核生物昼夜节律研究以及利用全球基因调控的力量和效率的合成生物学都有启示。