Suppr超能文献

一种用于分析外周生理数据的开源特征提取工具。

An Open-Source Feature Extraction Tool for the Analysis of Peripheral Physiological Data.

作者信息

Nabian Mohsen, Yin Yu, Wormwood Jolie, Quigley Karen S, Barrett Lisa F, Ostadabbas Sarah

机构信息

Augmented Cognition LabElectrical and Computer Engineering DepartmentNortheastern UniversityBostonMA02115USA.

Harvard Medical SchoolBostonMA02115USA.

出版信息

IEEE J Transl Eng Health Med. 2018 Oct 26;6:2800711. doi: 10.1109/JTEHM.2018.2878000. eCollection 2018.

Abstract

Electrocardiogram, electrodermal activity, electromyogram, continuous blood pressure, and impedance cardiography are among the most commonly used peripheral physiological signals (biosignals) in psychological studies and healthcare applications, including health tracking, sleep quality assessment, disease early-detection/diagnosis, and understanding human emotional and affective phenomena. This paper presents the development of a biosignal-specific processing toolbox (Bio-SP tool) for preprocessing and feature extraction of these physiological signals according to the state-of-the-art studies reported in the scientific literature and feedback received from the field experts. Our open-source Bio-SP tool is intended to assist researchers in affective computing, digital and mobile health, and telemedicine to extract relevant physiological patterns (i.e., features) from these biosignals semi-automatically and reliably. In this paper, we describe the successful algorithms used for signal-specific quality checking, artifact/noise filtering, and segmentation along with introducing features shown to be highly relevant to category discrimination in several healthcare applications (e.g., discriminating patterns associated with disease versus non-disease). Further, the Bio-SP tool is a publicly-available software written in MATLAB with a user-friendly graphical user interface (GUI), enabling future crowd-sourced modification to these tools. The GUI is compatible with MathWorks Classification Learner app for inference model development, such as model training, cross-validation scheme farming, and classification result computation.

摘要

心电图、皮肤电活动、肌电图、连续血压和阻抗心动图是心理学研究和医疗保健应用中最常用的外周生理信号(生物信号),包括健康追踪、睡眠质量评估、疾病早期检测/诊断以及理解人类情绪和情感现象。本文根据科学文献中报道的最新研究以及领域专家的反馈,介绍了一种用于对这些生理信号进行预处理和特征提取的生物信号特定处理工具箱(Bio-SP工具)的开发。我们的开源Bio-SP工具旨在协助情感计算、数字和移动健康以及远程医疗领域的研究人员从这些生物信号中半自动且可靠地提取相关生理模式(即特征)。在本文中,我们描述了用于信号特定质量检查、伪迹/噪声过滤和分割的成功算法,并介绍了在几个医疗保健应用中显示与类别区分高度相关的特征(例如,区分与疾病相关的模式和非疾病模式)。此外,Bio-SP工具是一个用MATLAB编写的公开可用软件,具有用户友好的图形用户界面(GUI),允许未来对这些工具进行众包修改。该GUI与MathWorks分类学习器应用程序兼容,用于推理模型开发,如模型训练、交叉验证方案制定和分类结果计算。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7293/6231905/2c3dfe8cf544/ostad1ab-2878000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验