Media Lab, Massachusetts Institute of Technology Cambridge, MA, USA.
Department of Psychology, Northeastern University Boston, MA, USA.
Front Psychol. 2013 Dec 4;4:893. doi: 10.3389/fpsyg.2013.00893. eCollection 2013.
We present a computational model capable of predicting-above human accuracy-the degree of trust a person has toward their novel partner by observing the trust-related nonverbal cues expressed in their social interaction. We summarize our prior work, in which we identify nonverbal cues that signal untrustworthy behavior and also demonstrate the human mind's readiness to interpret those cues to assess the trustworthiness of a social robot. We demonstrate that domain knowledge gained from our prior work using human-subjects experiments, when incorporated into the feature engineering process, permits a computational model to outperform both human predictions and a baseline model built in naiveté of this domain knowledge. We then present the construction of hidden Markov models to investigate temporal relationships among the trust-related nonverbal cues. By interpreting the resulting learned structure, we observe that models built to emulate different levels of trust exhibit different sequences of nonverbal cues. From this observation, we derived sequence-based temporal features that further improve the accuracy of our computational model. Our multi-step research process presented in this paper combines the strength of experimental manipulation and machine learning to not only design a computational trust model but also to further our understanding of the dynamics of interpersonal trust.
我们提出了一个计算模型,能够通过观察社交互动中表达的信任相关的非言语线索,以高于人类的准确度预测一个人对其新伴侣的信任程度。我们总结了之前的工作,其中我们确定了表示不可信行为的非言语线索,并展示了人类思维准备好解释这些线索以评估社交机器人的可信度。我们证明,从使用人类受试者实验获得的先前工作中的领域知识,如果纳入特征工程过程中,允许计算模型优于人类预测和基于该领域知识的天真模型。然后,我们提出了隐马尔可夫模型的构建,以研究信任相关非言语线索之间的时间关系。通过解释由此产生的学习结构,我们观察到为模拟不同信任水平而构建的模型表现出不同的非言语线索序列。从这个观察中,我们得出了基于序列的时间特征,进一步提高了我们计算模型的准确性。我们在本文中提出的多步骤研究过程结合了实验操作和机器学习的优势,不仅设计了计算信任模型,而且进一步深入了解了人际信任的动态。