Suppr超能文献

FLIRT:可穿戴数据的特征生成工具包。

FLIRT: A feature generation toolkit for wearable data.

机构信息

Department of Management, Technology, and Economics, ETH Zurich, Zurich, Switzerland.

Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.

出版信息

Comput Methods Programs Biomed. 2021 Nov;212:106461. doi: 10.1016/j.cmpb.2021.106461. Epub 2021 Oct 20.

Abstract

BACKGROUND AND OBJECTIVE

Researchers use wearable sensing data and machine learning (ML) models to predict various health and behavioral outcomes. However, sensor data from commercial wearables are prone to noise, missing, or artifacts. Even with the recent interest in deploying commercial wearables for long-term studies, there does not exist a standardized way to process the raw sensor data and researchers often use highly specific functions to preprocess, clean, normalize, and compute features. This leads to a lack of uniformity and reproducibility across different studies, making it difficult to compare results. To overcome these issues, we present FLIRT: A Feature Generation Toolkit for Wearable Data; it is an open-source Python package that focuses on processing physiological data specifically from commercial wearables with all its challenges from data cleaning to feature extraction.

METHODS

FLIRT leverages a variety of state-of-the-art algorithms (e.g., particle filters, ML-based artifact detection) to ensure a robust preprocessing of physiological data from wearables. In a subsequent step, FLIRT utilizes a sliding-window approach and calculates a feature vector of more than 100 dimensions - a basis for a wide variety of ML algorithms.

RESULTS

We evaluated FLIRT on the publicly available WESAD dataset, which focuses on stress detection with an Empatica E4 wearable. Preprocessing the data with FLIRT ensures that unintended noise and artifacts are appropriately filtered. In the classification task, FLIRT outperforms the preprocessing baseline of the original WESAD paper.

CONCLUSION

FLIRT provides functionalities beyond existing packages that can address unmet needs in physiological data processing and feature generation: (a) integrated handling of common wearable file formats (e.g., Empatica E4 archives), (b) robust preprocessing, and (c) standardized feature generation that ensures reproducibility of results. Nevertheless, while FLIRT comes with a default configuration to accommodate most situations, it offers a highly configurable interface for all of its implemented algorithms to account for specific needs.

摘要

背景和目的

研究人员使用可穿戴传感器数据和机器学习 (ML) 模型来预测各种健康和行为结果。然而,来自商业可穿戴设备的传感器数据容易受到噪声、缺失或伪影的影响。即使最近有兴趣将商业可穿戴设备用于长期研究,也没有标准化的方法来处理原始传感器数据,研究人员通常使用高度特定的功能来预处理、清理、归一化和计算特征。这导致不同研究之间缺乏一致性和可重复性,使得比较结果变得困难。为了解决这些问题,我们提出了 FLIRT:用于可穿戴数据的特征生成工具包;它是一个开源的 Python 包,专注于处理来自商业可穿戴设备的生理数据,同时解决数据清理到特征提取等所有挑战。

方法

FLIRT 利用各种最先进的算法(例如,粒子滤波器、基于机器学习的伪影检测)来确保对来自可穿戴设备的生理数据进行稳健的预处理。在后续步骤中,FLIRT 使用滑动窗口方法并计算超过 100 个维度的特征向量——这是各种 ML 算法的基础。

结果

我们在公开可用的 WESAD 数据集上评估了 FLIRT,该数据集专注于使用 Empatica E4 可穿戴设备进行压力检测。使用 FLIRT 预处理数据可确保适当过滤意外噪声和伪影。在分类任务中,FLIRT 优于原始 WESAD 论文的预处理基线。

结论

FLIRT 提供了超越现有包的功能,可以解决生理数据处理和特征生成方面未满足的需求:(a) 集成处理常见的可穿戴文件格式(例如,Empatica E4 档案),(b) 稳健的预处理,以及 (c) 标准化的特征生成,确保结果的可重复性。尽管 FLIRT 具有默认配置以适应大多数情况,但它为其所有实现的算法提供了高度可配置的接口,以满足特定需求。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验