一种闭环脑深部刺激系统的自主控制的机器学习方法。

A machine-learning approach to volitional control of a closed-loop deep brain stimulation system.

机构信息

Department of Electrical Engineering, University of Washington, Seattle, WA, United States of America. Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States of America.

出版信息

J Neural Eng. 2019 Feb;16(1):016004. doi: 10.1088/1741-2552/aae67f. Epub 2018 Nov 16.

Abstract

OBJECTIVE

Deep brain stimulation (DBS) is a well-established treatment for essential tremor, but may not be an optimal therapy, as it is always on, regardless of symptoms. A closed-loop (CL) DBS, which uses a biosignal to determine when stimulation should be given, may be better. Cortical activity is a promising biosignal for use in a closed-loop system because it contains features that are correlated with pathological and normal movements. However, neural signals are different across individuals, making it difficult to create a 'one size fits all' closed-loop system.

APPROACH

We used machine learning to create a patient-specific, CL DBS system. In this system, binary classifiers are used to extract patient-specific features from cortical signals and determine when volitional, tremor-evoking movement is occurring to alter stimulation voltage in real time.

MAIN RESULTS

This system is able to deliver stimulation up to 87%-100% of the time that subjects are moving. Additionally, we show that the therapeutic effect of the system is at least as good as that of current, continuous-stimulation paradigms.

SIGNIFICANCE

These findings demonstrate the promise of CL DBS therapy and highlight the importance of using subject-specific models in these systems.

摘要

目的

深部脑刺激(DBS)是治疗原发性震颤的一种成熟疗法,但可能不是最佳疗法,因为它始终处于开启状态,而不管症状如何。闭环(CL)DBS 使用生物信号来确定何时应该给予刺激,可能会更好。皮质活动是用于闭环系统的有前途的生物信号,因为它包含与病理性和正常运动相关的特征。然而,神经信号在个体之间存在差异,使得创建“一刀切”的闭环系统变得困难。

方法

我们使用机器学习为每个患者创建了一个特定的闭环 DBS 系统。在这个系统中,二分类器用于从皮质信号中提取患者特定的特征,并实时确定是否发生自愿的、引起震颤的运动,以改变刺激电压。

主要结果

该系统能够在受试者运动的高达 87%-100%的时间内提供刺激。此外,我们还表明,该系统的治疗效果至少与当前的连续刺激范式一样好。

意义

这些发现证明了闭环 DBS 治疗的前景,并强调了在这些系统中使用特定于受试者的模型的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索