Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
AMIA Annu Symp Proc. 2022 Feb 21;2021:651-659. eCollection 2021.
Deep brain stimulation is a complex movement disorder intervention that requires highly invasive brain surgery. Clinicians struggle to predict how patients will respond to this treatment. To address this problem, we are working toward developing a clinical tool to help neurologists predict deep brain stimulation response. We analyzed a cohort of 105 Parkinson's patients who underwent deep brain stimulation at Vanderbilt University Medical Center. We developed binary and multicategory models for predicting likelihood of motor symptom reduction after undergoing deep brain stimulation. We compared the performances of our best models to predictions made by neurologist experts in movement disorders. The strongest binary classification model achieved a 10-fold cross validation AUC of 0.90, outperforming the best neurologist predictions (0.56). These results are promising for future clinical applications, though more work is necessary to validate these findings in a larger cohort and taking into consideration broader quality of life outcome measures.
脑深部电刺激是一种复杂的运动障碍干预措施,需要进行高度侵入性的脑部手术。临床医生难以预测患者对这种治疗的反应。为了解决这个问题,我们正在努力开发一种临床工具,帮助神经科医生预测脑深部刺激反应。我们分析了在范德比尔特大学医学中心接受脑深部刺激的 105 名帕金森病患者的队列。我们开发了用于预测脑深部刺激后运动症状减轻可能性的二进制和多类别模型。我们将我们最好的模型的性能与运动障碍神经科专家的预测进行了比较。最强的二进制分类模型在 10 倍交叉验证 AUC 中达到 0.90,优于最佳神经科医生的预测(0.56)。这些结果对于未来的临床应用很有希望,尽管还需要在更大的队列中验证这些发现,并考虑更广泛的生活质量结果衡量标准。