Department of Physics, Northeastern University, Boston, MA, USA.
Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
Nucleic Acids Res. 2019 Jan 25;47(2):666-678. doi: 10.1093/nar/gky1119.
Nucleosome disruption plays a key role in many nuclear processes including transcription, DNA repair and recombination. Here we combine atomic force microscopy (AFM) and optical tweezers (OT) experiments to show that high mobility group B (HMGB) proteins strongly disrupt nucleosomes, revealing a new mechanism for regulation of chromatin accessibility. We find that both the double box yeast Hmo1 and the single box yeast Nhp6A display strong binding preferences for nucleosomes over linker DNA, and both HMGB proteins destabilize and unwind DNA from the H2A-H2B dimers. However, unlike Nhp6A, Hmo1 also releases half of the DNA held by the (H3-H4)2 tetramer. This difference in nucleosome destabilization may explain why Nhp6A and Hmo1 function at different genomic sites. Hmo1 is enriched at highly transcribed ribosomal genes, known to be depleted of histones. In contrast, Nhp6A is found across euchromatin, pointing to a significant difference in cellular function.
核小体的破坏在许多核过程中起着关键作用,包括转录、DNA 修复和重组。在这里,我们结合原子力显微镜(AFM)和光镊(OT)实验表明,高迁移率族 B(HMGB)蛋白强烈破坏核小体,揭示了调节染色质可及性的新机制。我们发现,酵母 Hmo1 的双盒结构和 Nhp6A 的单盒结构都对核小体表现出强烈的结合偏好,而这两种 HMGB 蛋白都能使 H2A-H2B 二聚体上的 DNA 失稳并解旋。然而,与 Nhp6A 不同的是,Hmo1 还能释放(H3-H4)2 四聚体结合的一半 DNA。这种核小体去稳定化的差异可能解释了为什么 Nhp6A 和 Hmo1 在不同的基因组位点发挥作用。Hmo1 在高度转录的核糖体基因中富集,这些基因已知缺乏组蛋白。相比之下,Nhp6A 存在于常染色质中,这表明它们在细胞功能上存在显著差异。