Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA.
Nucleic Acids Res. 2019 Jan 10;47(1):197-209. doi: 10.1093/nar/gky1132.
In bacteria, repair of DNA double-strand breaks uses a highly conserved helicase-nuclease complex to unwind DNA from a broken end and cut it at specific DNA sequences called Chi. In Escherichia coli the RecBCD enzyme also loads the DNA strand-exchange protein RecA onto the newly formed end, resulting in a recombination hotspot at Chi. Chi hotspots regulate multiple RecBCD activities by altering RecBCD's conformation, which is proposed to include the swinging of the RecB nuclease domain on the 19-amino-acid tether connecting the helicase and nuclease domains. Here, we altered the tether and tested multiple RecBCD activities, genetically in cells and enzymatically in cell-free extracts. Randomizing the amino-acid sequence or lengthening it had little effect. However, shortening it by as little as two residues or making substitutions of ≥10 proline or ≥9 glycine residues dramatically lowered Chi-dependent activities. These results indicate that proper control of RecBCD by Chi requires that the tether be long enough and appropriately flexible. We discuss a model in which the swing-time of the nuclease domain determines the position of Chi-dependent and Chi-independent cuts and Chi hotspot activity.
在细菌中,DNA 双链断裂的修复利用高度保守的解旋酶-核酸酶复合物将 DNA 从断裂末端展开,并在称为 Chi 的特定 DNA 序列处切割。在大肠杆菌中,RecBCD 酶还将 DNA 链交换蛋白 RecA 加载到新形成的末端上,导致 Chi 处形成重组热点。Chi 热点通过改变 RecBCD 的构象来调节多种 RecBCD 活性,据推测,这种构象包括在连接解旋酶和核酸酶结构域的 19 个氨基酸连接物上摆动 RecB 核酸酶结构域。在这里,我们改变了连接物并测试了细胞内的多种 RecBCD 活性和细胞游离提取物中的酶活性。随机改变氨基酸序列或延长它几乎没有影响。然而,将其缩短两个残基或替换≥10 个脯氨酸或≥9 个甘氨酸残基会显著降低 Chi 依赖性活性。这些结果表明,Chi 对 RecBCD 的适当控制要求连接物足够长且具有适当的灵活性。我们讨论了一个模型,其中核酸酶结构域的摆动时间决定了 Chi 依赖性和 Chi 非依赖性切割以及 Chi 热点活性的位置。