Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2629 HZ Delft, The Netherlands.
Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
Nucleic Acids Res. 2018 Feb 28;46(4):1821-1833. doi: 10.1093/nar/gkx1290.
The formation of 3' single-stranded DNA overhangs is a first and essential step during homology-directed repair of double-stranded breaks (DSB) of DNA, a task that in Escherichia coli is performed by RecBCD. While this protein complex has been well characterized through in vitro single-molecule studies, it has remained elusive how end resection proceeds in the crowded and complex environment in live cells. Here, we develop a two-color fluorescent reporter to directly observe the resection of individual inducible DSB sites within live E. coli cells. Real-time imaging shows that RecBCD during end resection degrades DNA with remarkably high speed (∼1.6 kb/s) and high processivity (>∼100 kb). The results show a pronounced asymmetry in the processing of the two DNA ends of a DSB, where much longer stretches of DNA are degraded in the direction of terminus. The microscopy observations are confirmed using quantitative polymerase chain reaction measurements of the DNA degradation. Deletion of the recD gene drastically decreased the length of resection, allowing for recombination with short ectopic plasmid homologies and significantly increasing the efficiency of horizontal gene transfer between strains. We thus visualized and quantified DNA end resection by the RecBCD complex in live cells, recorded DNA-degradation linked to end resection and uncovered a general relationship between the length of end resection and the choice of the homologous recombination template.
3'单链 DNA 突出物的形成是同源定向修复双链 DNA 断裂 (DSB) 的第一步,也是必需的一步,在大肠杆菌中,这一任务由 RecBCD 完成。虽然这个蛋白复合物已经通过体外单分子研究得到了很好的描述,但在活细胞中拥挤而复杂的环境中,末端切除是如何进行的仍然难以捉摸。在这里,我们开发了一种双色荧光报告系统,以直接观察活大肠杆菌细胞中单个诱导 DSB 位点的切除。实时成像显示,RecBCD 在末端切除过程中以惊人的高速(1.6 kb/s)和高进程性(>100 kb)降解 DNA。结果表明,DSB 两个 DNA 末端的处理存在明显的不对称性,其中在末端方向降解的 DNA 长度长得多。显微镜观察结果通过定量聚合酶链反应测量 DNA 降解得到了证实。recD 基因的缺失大大缩短了切除的长度,使得与短的异位质粒同源性的重组成为可能,并显著增加了菌株间水平基因转移的效率。因此,我们在活细胞中可视化和定量了 RecBCD 复合物的 DNA 末端切除,记录了与末端切除相关的 DNA 降解,并揭示了末端切除的长度与同源重组模板选择之间的一般关系。