Suppr超能文献

抗原加工足迹增强 MHC Ⅱ类天然配体预测。

Footprints of antigen processing boost MHC class II natural ligand predictions.

机构信息

Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, CP1650, San Martín, Argentina.

Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.

出版信息

Genome Med. 2018 Nov 16;10(1):84. doi: 10.1186/s13073-018-0594-6.

Abstract

BACKGROUND

Major histocompatibility complex class II (MHC-II) molecules present peptide fragments to T cells for immune recognition. Current predictors for peptide to MHC-II binding are trained on binding affinity data, generated in vitro and therefore lacking information about antigen processing.

METHODS

We generate prediction models of peptide to MHC-II binding trained with naturally eluted ligands derived from mass spectrometry in addition to peptide binding affinity data sets.

RESULTS

We show that integrated prediction models incorporate identifiable rules of antigen processing. In fact, we observed detectable signals of protease cleavage at defined positions of the ligands. We also hypothesize a role of the length of the terminal ligand protrusions for trimming the peptide to the MHC presented ligand.

CONCLUSIONS

The results of integrating binding affinity and eluted ligand data in a combined model demonstrate improved performance for the prediction of MHC-II ligands and T cell epitopes and foreshadow a new generation of improved peptide to MHC-II prediction tools accounting for the plurality of factors that determine natural presentation of antigens.

摘要

背景

主要组织相容性复合体 II 类 (MHC-II) 分子将肽片段呈递给 T 细胞以进行免疫识别。目前用于预测肽与 MHC-II 结合的方法是基于体外产生的结合亲和力数据进行训练的,因此缺乏有关抗原加工的信息。

方法

我们生成了一种预测模型,该模型基于质谱法从自然洗脱的配体中进行训练,除了肽结合亲和力数据集外。

结果

我们表明,集成预测模型包含可识别的抗原加工规则。实际上,我们在配体的定义位置观察到了可检测的蛋白酶切割信号。我们还假设末端配体突出部分的长度对于将肽修剪成 MHC 呈递的配体具有作用。

结论

将结合亲和力和洗脱配体数据整合到一个综合模型中的结果表明,该模型在预测 MHC-II 配体和 T 细胞表位方面的性能得到了提高,并预示着新一代改进的肽与 MHC-II 预测工具的出现,这些工具考虑了决定抗原自然呈递的多种因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbfe/6240193/0ab91c20d886/13073_2018_594_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验