Suppr超能文献

预测的 MHC 肽结合多态性解释了通过质谱洗脱配体数据定义的 MHC I 类抗原呈递的“热点”。

Predicted MHC peptide binding promiscuity explains MHC class I 'hotspots' of antigen presentation defined by mass spectrometry eluted ligand data.

机构信息

Evaxion Biotech, Copenhagen, Denmark.

Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark.

出版信息

Immunology. 2018 Jul;154(3):407-417. doi: 10.1111/imm.12905. Epub 2018 Mar 8.

Abstract

Peptides that bind to and are presented by MHC class I and class II molecules collectively make up the immunopeptidome. In the context of vaccine development, an understanding of the immunopeptidome is essential, and much effort has been dedicated to its accurate and cost-effective identification. Current state-of-the-art methods mainly comprise in silico tools for predicting MHC binding, which is strongly correlated with peptide immunogenicity. However, only a small proportion of the peptides that bind to MHC molecules are, in fact, immunogenic, and substantial work has been dedicated to uncovering additional determinants of peptide immunogenicity. In this context, and in light of recent advancements in mass spectrometry (MS), the existence of immunological hotspots has been given new life, inciting the hypothesis that hotspots are associated with MHC class I peptide immunogenicity. We here introduce a precise terminology for defining these hotspots and carry out a systematic analysis of MS and in silico predicted hotspots. We find that hotspots defined from MS data are largely captured by peptide binding predictions, enabling their replication in silico. This leads us to conclude that hotspots, to a great degree, are simply a result of promiscuous HLA binding, which disproves the hypothesis that the identification of hotspots provides novel information in the context of immunogenic peptide prediction. Furthermore, our analyses demonstrate that the signal of ligand processing, although present in the MS data, has very low predictive power to discriminate between MS and in silico defined hotspots.

摘要

肽与 MHC I 类和 II 类分子结合并呈递,共同构成免疫肽组。在疫苗开发的背景下,了解免疫肽组是必不可少的,并且已经做出了很多努力来准确且经济有效地识别它。目前的最先进方法主要包括用于预测 MHC 结合的计算工具,这与肽免疫原性密切相关。然而,实际上只有一小部分与 MHC 分子结合的肽具有免疫原性,并且已经进行了大量工作来揭示肽免疫原性的其他决定因素。在这种情况下,鉴于质谱 (MS) 的最新进展,免疫热点的存在赋予了新的生命,激发了热点与 MHC I 类肽免疫原性相关的假设。我们在这里引入了一个精确的术语来定义这些热点,并对 MS 和计算预测的热点进行了系统分析。我们发现,从 MS 数据定义的热点在很大程度上被肽结合预测所捕获,从而可以在计算上复制它们。这使我们得出结论,热点在很大程度上仅仅是 HLA 结合的混杂结果,这否定了在免疫肽预测的背景下识别热点提供新信息的假设。此外,我们的分析表明,尽管配体加工信号存在于 MS 数据中,但它区分 MS 和计算定义的热点的预测能力非常低。

相似文献

2
POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
Bioinformatics. 2007 Apr 15;23(8):942-9. doi: 10.1093/bioinformatics/btm061. Epub 2007 Mar 24.
4
Improved peptide-MHC class II interaction prediction through integration of eluted ligand and peptide affinity data.
Immunogenetics. 2019 Jul;71(7):445-454. doi: 10.1007/s00251-019-01122-z. Epub 2019 Jun 10.
5
Improved Prediction of MHC II Antigen Presentation through Integration and Motif Deconvolution of Mass Spectrometry MHC Eluted Ligand Data.
J Proteome Res. 2020 Jun 5;19(6):2304-2315. doi: 10.1021/acs.jproteome.9b00874. Epub 2020 Apr 30.
6
NNAlign_MA; MHC Peptidome Deconvolution for Accurate MHC Binding Motif Characterization and Improved T-cell Epitope Predictions.
Mol Cell Proteomics. 2019 Dec;18(12):2459-2477. doi: 10.1074/mcp.TIR119.001658. Epub 2019 Oct 2.
7
Improved methods for predicting peptide binding affinity to MHC class II molecules.
Immunology. 2018 Jul;154(3):394-406. doi: 10.1111/imm.12889. Epub 2018 Feb 6.
8
Footprints of antigen processing boost MHC class II natural ligand predictions.
Genome Med. 2018 Nov 16;10(1):84. doi: 10.1186/s13073-018-0594-6.
10
RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles.
Cell Syst. 2021 Feb 17;12(2):195-202.e9. doi: 10.1016/j.cels.2020.11.005. Epub 2020 Dec 17.

引用本文的文献

1
Systematic discovery of neoepitope-HLA pairs for neoantigens shared among patients and tumor types.
Nat Biotechnol. 2024 Jul;42(7):1107-1117. doi: 10.1038/s41587-023-01945-y. Epub 2023 Oct 19.
2
Primate protein-ligand interfaces exhibit significant conservation and unveil human-specific evolutionary drivers.
PLoS Comput Biol. 2023 Mar 23;19(3):e1010966. doi: 10.1371/journal.pcbi.1010966. eCollection 2023 Mar.
3
Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise.
Proteomics. 2021 Dec;21(23-24):e2000143. doi: 10.1002/pmic.202000143. Epub 2021 Aug 9.
4
Challenges targeting cancer neoantigens in 2021: a systematic literature review.
Expert Rev Vaccines. 2021 Jul;20(7):827-837. doi: 10.1080/14760584.2021.1935248. Epub 2021 Jun 9.
6
Predicting Antigen Presentation-What Could We Learn From a Million Peptides?
Front Immunol. 2018 Jul 25;9:1716. doi: 10.3389/fimmu.2018.01716. eCollection 2018.
8
Mapping the tumour human leukocyte antigen (HLA) ligandome by mass spectrometry.
Immunology. 2018 Jul;154(3):331-345. doi: 10.1111/imm.12936. Epub 2018 May 8.

本文引用的文献

1
An Analysis of Natural T Cell Responses to Predicted Tumor Neoepitopes.
Front Immunol. 2017 Nov 15;8:1566. doi: 10.3389/fimmu.2017.01566. eCollection 2017.
2
Identification of Immunogenic Epitopes by MS/MS.
Cancer J. 2017 Mar/Apr;23(2):102-107. doi: 10.1097/PPO.0000000000000252.
5
MHC class I-associated peptides derive from selective regions of the human genome.
J Clin Invest. 2016 Dec 1;126(12):4690-4701. doi: 10.1172/JCI88590. Epub 2016 Nov 14.
6
Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry.
Mol Cell Proteomics. 2015 Dec;14(12):3105-17. doi: 10.1074/mcp.O115.052431.
7
Immunoinformatics and epitope prediction in the age of genomic medicine.
Genome Med. 2015 Nov 20;7:119. doi: 10.1186/s13073-015-0245-0.
8
Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity.
J Exp Med. 2014 Oct 20;211(11):2231-48. doi: 10.1084/jem.20141308. Epub 2014 Sep 22.
9
NetTepi: an integrated method for the prediction of T cell epitopes.
Immunogenetics. 2014 Aug;66(7-8):449-56. doi: 10.1007/s00251-014-0779-0. Epub 2014 May 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验