Department of Molecular, Cellular and Biomedical Sciences, CDI Cluster on Neural Development and Repair, The CUNY School of Medicine, City College (CCNY), The City University of New York (CUNY), New York City, New York, USA.
The CUNY Neuroscience Collaborative PhD Program, CUNY Graduate Center, New York City, New York, USA.
J Neurochem. 2019 Feb;148(4):531-549. doi: 10.1111/jnc.14629. Epub 2018 Dec 20.
Excitotoxicity, caused by exaggerated neuronal stimulation by Glutamate (Glu), is a major cause of neurodegeneration in brain ischemia. While we know that neurodegeneration is triggered by overstimulation of Glu-receptors (GluRs), the subsequent mechanisms that lead to cellular demise remain controversial. Surprisingly, signaling downstream of GluRs can also activate neuroprotective pathways. The strongest evidence involves activation of the transcription factor cAMP response element-binding protein (CREB), widely recognized for its importance in synaptic plasticity. Canonical views describe CREB as a phosphorylation-triggered transcription factor, where transcriptional activation involves CREB phosphorylation and association with CREB-binding protein. However, given CREB's ubiquitous cross-tissue expression, the multitude of cascades leading to CREB phosphorylation, and its ability to regulate thousands of genes, it remains unclear how CREB exerts closely tailored, differential neuroprotective responses in excitotoxicity. A non-canonical, alternative cascade for activation of CREB-mediated transcription involves the CREB co-factor cAMP-regulated transcriptional co-activator (CRTC), and may be independent of CREB phosphorylation. To identify cascades that activate CREB in excitotoxicity we used a Caenorhabditis elegans model of neurodegeneration by excitotoxic necrosis. We demonstrated that CREB's neuroprotective effect was conserved, and seemed most effective in neurons with moderate Glu exposure. We found that factors mediating canonical CREB activation were not involved. Instead, phosphorylation-independent CREB activation in nematode excitotoxic necrosis hinged on CRTC. CREB-mediated transcription that depends on CRTC, but not on CREB phosphorylation, might lead to expression of a specific subset of neuroprotective genes. Elucidating conserved mechanisms of excitotoxicity-specific CREB activation can help us focus on core neuroprotective programs in excitotoxicity. Cover Image for this issue: doi: 10.1111/jnc.14494.
兴奋性毒性是由谷氨酸(Glu)引起的神经元过度刺激导致的,是脑缺血中神经退行性变的主要原因。虽然我们知道神经退行性变是由 Glu 受体(GluRs)过度刺激引发的,但导致细胞死亡的后续机制仍存在争议。令人惊讶的是,GluRs 下游的信号转导也可以激活神经保护途径。最强有力的证据涉及转录因子 cAMP 反应元件结合蛋白(CREB)的激活,该蛋白因其在突触可塑性中的重要性而被广泛认可。传统观点将 CREB 描述为一种磷酸化触发的转录因子,其中转录激活涉及 CREB 磷酸化和与 CREB 结合蛋白的结合。然而,鉴于 CREB 广泛存在于组织中的表达、导致 CREB 磷酸化的众多级联反应以及其调节数千个基因的能力,尚不清楚 CREB 如何在兴奋性毒性中发挥紧密定制的、差异化的神经保护反应。激活 CREB 介导的转录的非经典替代级联反应涉及 CREB 共因子 cAMP 调节的转录共激活因子(CRTC),并且可能独立于 CREB 磷酸化。为了确定在兴奋性毒性中激活 CREB 的级联反应,我们使用了兴奋性坏死诱导的秀丽隐杆线虫神经退行性变模型。我们证明了 CREB 的神经保护作用是保守的,并且在暴露于适度 Glu 的神经元中似乎最有效。我们发现参与经典 CREB 激活的因子没有参与。相反,线虫兴奋性坏死中不依赖于磷酸化的 CREB 激活依赖于 CRTC。依赖于 CRTC 而不依赖于 CREB 磷酸化的 CREB 介导的转录可能导致特定亚组神经保护基因的表达。阐明兴奋性毒性特异性 CREB 激活的保守机制可以帮助我们专注于兴奋性毒性中的核心神经保护程序。本期的封面图片:doi: 10.1111/jnc.14494。