Bates Emily A, Victor Martin, Jones Adriana K, Shi Yang, Hart Anne C
Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.
J Neurosci. 2006 Mar 8;26(10):2830-8. doi: 10.1523/JNEUROSCI.3344-05.2006.
Expansion of a polyglutamine tract in the huntingtin protein causes neuronal degeneration and death in Huntington's disease patients, but the molecular mechanisms underlying polyglutamine-mediated cell death remain unclear. Previous studies suggest that expanded polyglutamine tracts alter transcription by sequestering glutamine rich transcriptional regulatory proteins, thereby perturbing their function. We tested this hypothesis in Caenorhabditis elegans neurons expressing a human huntingtin fragment with an expanded polyglutamine tract (Htn-Q150). Loss of function alleles and RNA interference (RNAi) were used to examine contributions of C. elegans cAMP response element-binding protein (CREB), CREB binding protein (CBP), and histone deacetylases (HDACs) to polyglutamine-induced neurodegeneration. Deletion of CREB (crh-1) or loss of one copy of CBP (cbp-1) enhanced polyglutamine toxicity in C. elegans neurons. Loss of function alleles and RNAi were then used to systematically reduce function of each C. elegans HDAC. Generally, knockdown of individual C. elegans HDACs enhanced Htn-Q150 toxicity, but knockdown of C. elegans hda-3 suppressed toxicity. Neuronal expression of hda-3 restored Htn-Q150 toxicity and suggested that C. elegans HDAC3 (HDA-3) acts within neurons to promote degeneration in response to Htn-Q150. Genetic epistasis experiments suggested that HDA-3 and CRH-1 (C. elegans CREB homolog) directly oppose each other in regulating transcription of genes involved in polyglutamine toxicity. hda-3 loss of function failed to suppress increased neurodegeneration in hda-1/+;Htn-Q150 animals, indicating that HDA-1 and HDA-3 have different targets with opposing effects on polyglutamine toxicity. Our results suggest that polyglutamine expansions perturb transcription of CREB/CBP targets and that specific targeting of HDACs will be useful in reducing associated neurodegeneration.
亨廷顿蛋白中多聚谷氨酰胺序列的扩展会导致亨廷顿病患者神经元变性和死亡,但多聚谷氨酰胺介导的细胞死亡的分子机制仍不清楚。先前的研究表明,扩展的多聚谷氨酰胺序列通过隔离富含谷氨酰胺的转录调节蛋白来改变转录,从而扰乱其功能。我们在表达具有扩展多聚谷氨酰胺序列(Htn-Q150)的人类亨廷顿片段的秀丽隐杆线虫神经元中测试了这一假设。使用功能缺失等位基因和RNA干扰(RNAi)来研究秀丽隐杆线虫cAMP反应元件结合蛋白(CREB)、CREB结合蛋白(CBP)和组蛋白脱乙酰酶(HDAC)对多聚谷氨酰胺诱导的神经变性的作用。CREB(crh-1)的缺失或CBP(cbp-1)一个拷贝的缺失增强了秀丽隐杆线虫神经元中的多聚谷氨酰胺毒性。然后使用功能缺失等位基因和RNAi来系统地降低每个秀丽隐杆线虫HDAC的功能。一般来说,单个秀丽隐杆线虫HDAC的敲低增强了Htn-Q150毒性,但秀丽隐杆线虫hda-3的敲低抑制了毒性。hda-3的神经元表达恢复了Htn-Q150毒性,并表明秀丽隐杆线虫HDAC3(HDA-3)在神经元内起作用,以促进对Htn-Q150的变性反应。遗传上位性实验表明,HDA-3和CRH-1(秀丽隐杆线虫CREB同源物)在调节参与多聚谷氨酰胺毒性的基因转录方面直接相互拮抗。hda-3功能缺失未能抑制hda-1/+;Htn-Q150动物中增加的神经变性,表明HDA-1和HDA-3对多聚谷氨酰胺毒性具有不同的靶点和相反的作用。我们的结果表明,多聚谷氨酰胺扩展扰乱了CREB/CBP靶点的转录,并且HDAC的特异性靶向将有助于减少相关的神经变性。