Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA.
Department of Internal Medicine, Division of Rheumatology, University of Nebraska Medical Center, Omaha, NE, USA; Veteran Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
J Pharm Biomed Anal. 2019 Feb 5;164:460-466. doi: 10.1016/j.jpba.2018.11.011. Epub 2018 Nov 9.
Circulating uric acid (UA) is an important biomarker, not only in the detection and management of gout, but also in assessing the risk of related comorbidity. The impact of collection methods on clinical UA measurements has been the subject of limited study. After observing significant differences between UA concentrations of blood samples obtained by different collection tubes, we began examining the effects of exogenous tube components on measured UA concentrations. We aimed to: (1) demonstrate the variability in uricase-based UA measurements attributable to different collection methods and (2) identify factors influencing this variability.
Blood samples from human subjects were collected using Serum Separator Tubes (SST tubes), Acid Citrate Dextrose (ACD) tubes, and Sodium Citrate (SC) tubes. Circulating UA concentrations were measured by chemistry analyzers utilizing the uricase method. Absorbance assays were run in order to determine the effects of citric acid, sodium citrate, and dextrose on measured absorbance in the presence of leuco crystal violet dye, hydrogen peroxide, and peroxidase. Statistical analyses-including Student's T tests and ANOVA-were used to compare results.
UA concentrations of blood samples collected in ACD tubes were significantly lower than those collected in SST tubes (P < 0.01). Samples collected in SC tubes trended towards lower UA measurements than samples collected in SST tubes, although this difference did not reach statistical significance (P = 0.06). Blood samples spiked with separate concentrations of sodium citrate (3.2 and 22.0 g/L), citric acid (8.0 g/L), and dextrose (24.5 g/L) demonstrated significantly lower UA measurements compared to controls (P < 0.01). Absorbance assays demonstrated that increasing concentrations of citric acid and sodium citrate-in the presence of leuco crystal violet, hydrogen peroxide, and peroxidase-decreased the amount of oxidized dye in the uricase method of UA measurement in a dose-dependent manner (P < 0.01). In contrast, dextrose did not significantly alter the amount of oxidized dye available.
Our results indicate that citric acid obstructs accurate uricase-based UA measurement, providing falsely low values. Citric acid, a known antioxidant, scavenges hydrogen peroxide, a key intermediate using the uricase method. By scavenging hydrogen peroxide, citric acid decreases the amount of oxidized leuco dye leading to falsely low UA measurements. Therefore, collection tubes, like ACD and SC tubes, which contain concentrations of citric acid or its conjugate base sodium citrate should not be used to measure circulating UA levels when utilizing uricase-based measurement methods.
尿酸(UA)是一种重要的生物标志物,不仅在痛风的检测和管理中,而且在评估相关合并症的风险中都有重要意义。收集方法对临床 UA 测量的影响是有限研究的主题。在观察到不同采集管采集的血液样本中 UA 浓度存在显著差异后,我们开始研究外源性管成分对测量 UA 浓度的影响。我们的目的是:(1)证明不同采集方法导致的尿酸酶法 UA 测量值的可变性;(2)确定影响这种可变性的因素。
使用血清分离管(SST 管)、柠檬酸葡萄糖(ACD)管和柠檬酸钠(SC)管采集人体血液样本。使用化学分析仪基于尿酸酶法测量循环 UA 浓度。进行吸光度测定,以确定在亮甲酚紫染料、过氧化氢和过氧化物酶存在的情况下,柠檬酸、柠檬酸钠和葡萄糖对测量吸光度的影响。使用包括学生 t 检验和方差分析在内的统计分析来比较结果。
ACD 管采集的血液样本 UA 浓度明显低于 SST 管(P<0.01)。SC 管采集的样本 UA 测量值趋向于低于 SST 管采集的样本,但差异无统计学意义(P=0.06)。与对照相比,分别用 3.2 和 22.0 g/L 的柠檬酸钠、8.0 g/L 的柠檬酸和 24.5 g/L 的葡萄糖对血液样本进行了加标,UA 测量值明显降低(P<0.01)。吸光度测定表明,在亮甲酚紫、过氧化氢和过氧化物酶存在的情况下,柠檬酸和柠檬酸钠的浓度增加(3.2 和 22.0 g/L)以剂量依赖性方式降低尿酸酶法 UA 测量中的氧化染料量(P<0.01)。相比之下,葡萄糖并没有显著改变可用的氧化染料量。
我们的结果表明,柠檬酸会阻碍尿酸酶法 UA 测量的准确性,导致低值结果。柠檬酸是一种已知的抗氧化剂,会清除过氧化氢,这是尿酸酶法的一个关键中间产物。通过清除过氧化氢,柠檬酸会减少氧化的亮甲酚紫染料的量,从而导致 UA 测量值偏低。因此,在使用尿酸酶法测量方法时,不应使用含有柠檬酸或其共轭碱柠檬酸钠的 ACD 和 SC 管等采集管来测量循环 UA 水平。