Srinivasan Krishnamoorthi, Dey Sandip, Sengupta Jayati
Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India.
Curr Genet. 2019 Apr;65(2):363-370. doi: 10.1007/s00294-018-0905-x. Epub 2018 Nov 17.
Multifunctional proteins often show modular structures. A functional domain and the structural modules within the domain show evolutionary conservation of their spatial arrangement since that gives the protein its functionality. However, the question remains as to how members of different domains of life (Archaea, Bacteria, Eukarya), polish and perfect these modules within conserved multidomain proteins, to tailor functional proteins according to their specific requirements. In the quest for plausible answers to this question, we studied the bacterial protein HflX. HflX is a universally conserved member of the Obg-GTPase superfamily but its functional role in Archaea and Eukarya is barely known. It is a multidomain protein and possesses, in addition to its conserved GTPase domain, an ATP-binding N-terminal domain. It is involved in heat stress response in Escherichia coli and our laboratory recently identified an ATP-dependent RNA helicase activity of E. coli HflX, which is likely instrumental in rescuing ribosomes during heat stress. Because perception and response to stress is expected to be different in different life forms, the question is whether this activity is preserved in higher organisms or not. Thus, we explored the evolution pattern of different structural modules of HflX, with particular emphasis on the ATP-binding domain, to understand plausible biological role of HflX in other forms of life. Our analyses indicate that, while the evolutionary pattern of the GTPase domain follows a conserved phylogeny, conservation of the ATP-binding domain shows a complicated pattern. The limited analysis described here hints towards possible evolutionary adaptations and modifications of the domain, something which needs to be investigated in more depth in homologs from other life forms. Deciphering how nature 'tweaks' such modules, both structurally and functionally, may help in understanding the evolution of such proteins, and, on a large-scale, of stress-related proteins in general as well.
多功能蛋白质通常呈现模块化结构。一个功能域以及该域内的结构模块在空间排列上表现出进化保守性,因为这赋予了蛋白质其功能。然而,不同生命域(古菌、细菌、真核生物)的成员如何在保守的多结构域蛋白质中完善和优化这些模块,以根据其特定需求定制功能蛋白质,这一问题仍然存在。为了探寻这个问题的合理答案,我们研究了细菌蛋白HflX。HflX是Obg - GTPase超家族中普遍保守的成员,但其在古菌和真核生物中的功能作用却鲜为人知。它是一种多结构域蛋白质,除了其保守的GTPase结构域外,还拥有一个ATP结合的N端结构域。它参与大肠杆菌的热应激反应,并且我们实验室最近鉴定出大肠杆菌HflX具有ATP依赖的RNA解旋酶活性,这可能有助于在热应激期间拯救核糖体。由于不同生命形式对压力的感知和反应预计不同,问题在于这种活性在高等生物中是否得以保留。因此,我们探索了HflX不同结构模块的进化模式,特别关注ATP结合结构域,以了解HflX在其他生命形式中的合理生物学作用。我们的分析表明,虽然GTPase结构域的进化模式遵循保守的系统发育,但ATP结合结构域的保守性呈现出复杂的模式。此处所描述的有限分析暗示了该结构域可能存在的进化适应和修饰,这需要在来自其他生命形式的同源物中进行更深入的研究。解读自然如何在结构和功能上“微调”这些模块,可能有助于理解此类蛋白质的进化,以及总体上大规模地理解与应激相关的蛋白质的进化。