Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08005, Spain.
Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, Paris 75005, France; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.
Neuron. 2018 Dec 19;100(6):1446-1459.e6. doi: 10.1016/j.neuron.2018.10.045. Epub 2018 Nov 16.
Previous studies suggest that the brain operates at a critical point in which phases of order and disorder coexist, producing emergent patterned dynamics at all scales and optimizing several brain functions. Here, we combined light-sheet microscopy with GCaMP zebrafish larvae to study whole-brain dynamics in vivo at near single-cell resolution. We show that spontaneous activity propagates in the brain's three-dimensional space, generating scale-invariant neuronal avalanches with time courses and recurrence times that exhibit statistical self-similarity at different magnitude, temporal, and frequency scales. This suggests that the nervous system operates close to a non-equilibrium phase transition, where a large repertoire of spatial, temporal, and interactive modes can be supported. Finally, we show that gap junctions contribute to the maintenance of criticality and that, during interactions with the environment (sensory inputs and self-generated behaviors), the system is transiently displaced to a more ordered regime, conceivably to limit the potential sensory representations and motor outcomes.
先前的研究表明,大脑在临界点上运行,其中秩序和无序的阶段共存,在所有尺度上产生新兴的模式动力学,并优化了几种大脑功能。在这里,我们结合光片显微镜和 GCaMP 斑马鱼幼虫,在近单细胞分辨率下研究体内全脑动力学。我们表明,自发活动在大脑的三维空间中传播,产生具有时间过程和复发时间的标度不变的神经元雪崩,这些时间过程和复发时间在不同幅度、时间和频率尺度上表现出统计自相似性。这表明神经系统接近非平衡相变,其中可以支持大量的空间、时间和交互模式。最后,我们表明间隙连接有助于维持临界性,并且在与环境(感觉输入和自我产生的行为)相互作用时,系统会暂时移至更有序的状态,这可以限制潜在的感觉表示和运动结果。