Aarhus Institute of Advanced Studies, Aarhus University, 8000 Aarhus C, Denmark; Woods Hole Oceanographic Institution, Biology Department, 266 Woods Hole Road, Woods Hole, MA 02543, USA.
Scottish Oceans Institute, University of St Andrews, East Sands, St Andrews KY16 8LB, Scotland, UK; Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
Curr Biol. 2018 Dec 3;28(23):3878-3885.e3. doi: 10.1016/j.cub.2018.10.037. Epub 2018 Nov 15.
Toothed whales are apex predators varying in size from 40-kg porpoises to 50-ton sperm whales that all forage by emitting high-amplitude ultrasonic clicks and listening for weak returning echoes [1, 2]. The sensory field of view of these echolocating animals depends on the characteristics of the biosonar signals and the morphology of the sound generator, yet it is poorly understood how these biophysical relationships have shaped the evolution of biosonar parameters as toothed whales adapted to different foraging niches. Here we test how biosonar output, frequency, and directivity vary with body size to understand the co-evolution of biosonar signals and sound-generating structures. We show that the radiated power increases twice as steeply with body mass (P ∝ M) than expected from typical scaling laws of call intensity [3], indicating an evolutionary hyperallometric investment into sound production structures that may be driven by a strong selective pressure for long-range biosonar. We find that biosonar frequency scales inversely with body size (F ∝ M), resulting in remarkably stable biosonar beamwidth that is independent of body size. We discuss why the three main hypotheses for inverse frequency scaling in animal communication signals [3-5] do not explain frequency scaling in toothed whale biosonar. We instead propose that a narrow acoustic field of view, analogous to the fovea of many visual predators, is the primary evolutionary driver of biosonar frequency in toothed whales, serving as a spatial filter to reduce clutter levels and facilitate long-range prey detection.
齿鲸是大小从 40 公斤的海豚到 50 吨的抹香鲸等各种体型的顶级掠食者,它们都通过发射高振幅超声波并聆听微弱的回波来觅食[1,2]。这些回声定位动物的感觉视野取决于生物声纳信号的特征和声源的形态,但对于这些生物物理关系如何塑造齿鲸适应不同觅食生态位的生物声纳参数的进化,人们知之甚少。在这里,我们测试了生物声纳输出、频率和指向性如何随体型变化,以了解生物声纳信号和发声结构的共同进化。我们表明,辐射功率与体重的增长比典型的呼叫强度缩放定律[3]预期的要陡峭两倍(P∝M),这表明在声音产生结构上存在进化超比例投资,这可能是由于长距离生物声纳的强烈选择压力驱动的。我们发现生物声纳频率与体型成反比(F∝M),从而导致生物声纳波束宽度非常稳定,与体型无关。我们讨论了为什么动物通讯信号中逆频率缩放的三个主要假设[3-5]不能解释齿鲸生物声纳的频率缩放。相反,我们提出,窄的声场类似于许多视觉捕食者的中央凹,是齿鲸生物声纳频率的主要进化驱动因素,它充当空间滤波器,以降低杂波水平并促进远距离猎物检测。