Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, United States of America.
PLoS One. 2022 Mar 24;17(3):e0264988. doi: 10.1371/journal.pone.0264988. eCollection 2022.
A combination of machine learning and expert analyst review was used to detect odontocete echolocation clicks, identify dominant click types, and classify clicks in 32 years of acoustic data collected at 11 autonomous monitoring sites in the western North Atlantic between 2016 and 2019. Previously-described click types for eight known odontocete species or genera were identified in this data set: Blainville's beaked whales (Mesoplodon densirostris), Cuvier's beaked whales (Ziphius cavirostris), Gervais' beaked whales (Mesoplodon europaeus), Sowerby's beaked whales (Mesoplodon bidens), and True's beaked whales (Mesoplodon mirus), Kogia spp., Risso's dolphin (Grampus griseus), and sperm whales (Physeter macrocephalus). Six novel delphinid echolocation click types were identified and named according to their median peak frequencies. Consideration of the spatiotemporal distribution of these unidentified click types, and comparison to historical sighting data, enabled assignment of the probable species identity to three of the six types, and group identity to a fourth type. UD36, UD26, and UD28 were attributed to Risso's dolphin (G. griseus), short-finned pilot whale (G. macrorhynchus), and short-beaked common dolphin (D. delphis), respectively, based on similar regional distributions and seasonal presence patterns. UD19 was attributed to one or more species in the subfamily Globicephalinae based on spectral content and signal timing. UD47 and UD38 represent distinct types for which no clear spatiotemporal match was apparent. This approach leveraged the power of big acoustic and big visual data to add to the catalog of known species-specific acoustic signals and yield new inferences about odontocete spatiotemporal distribution patterns. The tools and call types described here can be used for efficient analysis of other existing and future passive acoustic data sets from this region.
采用机器学习和专家分析师审查相结合的方法,来检测齿鲸的回声定位点击,识别主要的点击类型,并对 2016 年至 2019 年在北大西洋西部的 11 个自动监测站收集的 32 年声数据进行分类。在这个数据集里确定了之前描述的八种已知齿鲸物种或属的点击类型:贝氏喙鲸(Mesoplodon densirostris)、柯维氏喙鲸(Ziphius cavirostris)、格氏喙鲸(Mesoplodon europaeus)、白喙斑纹海豚(Mesoplodon bidens)、小抹香鲸(Mesoplodon mirus)、柯氏喙鲸属、灰海豚(Grampus griseus)和抹香鲸(Physeter macrocephalus)。根据它们的中值峰值频率,确定并命名了六种新的海豚回声定位点击类型。考虑到这些未识别的点击类型的时空分布,并与历史目击数据进行比较,将其中三种类型的可能物种身份分配给了三种类型,将第四种类型的群体身份分配给了第四种类型。UD36、UD26 和 UD28 分别归因于灰海豚(G. griseus)、短吻领航鲸(G. macrorhynchus)和短吻真海豚(D. delphis),基于相似的区域分布和季节性存在模式。UD19 根据光谱内容和信号定时归因于宽吻海豚亚科(Globicephalinae)的一个或多个物种。UD47 和 UD38 是两种独特的类型,没有明显的时空匹配。这种方法利用了大型声学和大型视觉数据的力量,增加了已知特定物种声学信号的目录,并对齿鲸的时空分布模式做出了新的推断。这里描述的工具和叫声类型可用于对该地区其他现有和未来的被动声学数据集进行高效分析。