Angilletta Michael J, Youngblood Jacob P, Neel Lauren K, VandenBrooks John M
School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
Neurosci Lett. 2019 Jan 23;692:127-136. doi: 10.1016/j.neulet.2018.10.046. Epub 2018 Oct 25.
The nervous system acts as a biological thermostat by controlling behaviors that regulate the warming and cooling of animals. We review the structures responsible for thermoregulation in three model species: roundworms (Caenorhabditis elegans), flies (Drosophila melanogaster), and rats (Rattus novegicus). We then consider additional features of the nervous system required to explain adaptive plasticity of the set-point temperature and the precision of thermoregulation. Because animals use resources such as energy, water, and oxygen to thermoregulate, the nervous system monitors the abundance of these resources and adjusts the strategy of thermoregulation accordingly. Starvation, dehydration, or hypoxemia alter the activity of temperature-sensitive neurons in the pre-optic area of the hypothalamus. Other regions of the brain work in conjunction with the hypothalamus to promote adaptive plasticity of thermoregulation. For example, the amygdala likely inhibits neurons of the pre-optic area, overriding thermoregulation when a risk of predation or a threat of aggression exists. Moreover, the hippocampus enables an animal to remember microhabitats that enable safe and effective thermoregulation. In ectothermic animals, such as C. elegans and D. melanogaster, the nervous system can alter set-point temperatures as the environmental temperatures change. To build on this knowledge, neuroscientists can use experimental evolution to study adaptation of neural phenotypes in controlled thermal environments. A microevolutionary perspective would leverage our understanding of ecological processes to predict the origin and maintenance of neural phenotypes by natural selection.
神经系统通过控制调节动物体温升降的行为,起到生物恒温器的作用。我们综述了三种模式生物中负责体温调节的结构:线虫(秀丽隐杆线虫)、果蝇(黑腹果蝇)和大鼠(褐家鼠)。然后,我们考虑神经系统的其他特征,这些特征是解释体温设定点的适应性可塑性和体温调节精度所必需的。由于动物利用能量、水和氧气等资源来进行体温调节,神经系统会监测这些资源的丰富程度,并相应地调整体温调节策略。饥饿、脱水或低氧血症会改变下丘脑视前区温度敏感神经元的活动。大脑的其他区域与下丘脑协同工作,以促进体温调节的适应性可塑性。例如,杏仁核可能会抑制视前区的神经元,在存在捕食风险或攻击威胁时,超越体温调节。此外,海马体使动物能够记住有利于安全有效体温调节的微生境。在变温动物中,如秀丽隐杆线虫和黑腹果蝇,随着环境温度的变化,神经系统可以改变体温设定点。基于这一知识,神经科学家可以利用实验进化来研究在可控热环境中神经表型的适应性。微观进化的视角将利用我们对生态过程的理解,通过自然选择来预测神经表型的起源和维持。