Suppr超能文献

利用集水区陆面模型和支持向量机,通过同化先进微波扫描辐射计-地球观测系统(AMSR-E)亮温观测数据估算北美地区的积雪质量。

Estimating snow mass in North America through assimilation of AMSR-E brightness temperature observations using the Catchment land surface model and support vector machines.

作者信息

Xue Yuan, Forman Barton A, Reichle Rolf H

机构信息

Department of Civil and Environmental, Engineering, University of Maryland, College Park, Maryland, USA.

NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

出版信息

Water Resour Res. 2018 Sep;54(9):6488-6509. doi: 10.1029/2017WR022219. Epub 2018 Jul 23.

Abstract

To estimate snow mass across North America, brightness temperature observations collected by the Advanced Microwave Scanning Radiometer from 2002 to 2011 were assimilated into the Catchment model using a support vector machine (SVM) as the observation operator and a one-dimensional ensemble Kalman filter. The performance of the assimilation system is evaluated through comparisons against ground-based measurements and reference snow products. In general, there are no statistically significant skill differences between the domain-averaged, model-only ("open loop", or OL) snow estimates and assimilation estimates. The assessment of improvements (or degradations) in snow estimates is difficult because of limitations in the measurements (or products) used for evaluation. It is found that assimilation estimates agree slightly better in terms of root-mean-square error (RMSE) and Nash-Sutcliffe model efficiency with ground-based snow depth measurements than OL estimates in 82% (56 out of 62) of pixels that are colocated with at least two ground-based stations. Assimilation estimates tend to agree slightly better in terms of mean difference with reference snow products over tun-dra snow, alpine snow, maritime snow, and sparsely-vegetated, snow covered pixels. Changes in snow mass via assimilation translate into improvements (e.g.,by 22% on average in terms of RMSE, relative to OL) in cumulative runoff estimates when compared against discharge measurements in 11 out of 13 snow-dominated basins in Alaska. These results suggest that a SVM can potentially serve as an effective observation operator for snow mass estimation within a radiance assimilation system, but a better observational baseline is required to document a statistically significant improvement.

摘要

为估算北美地区的积雪质量,利用支持向量机(SVM)作为观测算子和一维集合卡尔曼滤波器,将2002年至2011年先进微波扫描辐射计收集的亮温观测数据同化到集水区模型中。通过与地面测量数据和参考积雪产品进行比较,评估同化系统的性能。总体而言,区域平均的仅模型(“开环”,即OL)积雪估算值与同化估算值之间在统计上没有显著的技能差异。由于用于评估的测量数据(或产品)存在局限性,对积雪估算值的改进(或退化)评估较为困难。研究发现,在与至少两个地面站点同位置的62个像素中的82%(56个)像素上,同化估算值在均方根误差(RMSE)和纳什-萨特克利夫模型效率方面与地面积雪深度测量值的一致性略优于OL估算值。在苔原积雪、高山积雪、海洋积雪以及植被稀疏、有积雪覆盖的像素上,同化估算值在与参考积雪产品的平均差异方面往往一致性略好。与阿拉斯加13个以积雪为主的流域中的11个流域的流量测量值相比,通过同化得到的积雪质量变化转化为累积径流估算值的改进(例如,相对于OL,RMSE平均提高22%)。这些结果表明,支持向量机有潜力作为辐射同化系统中积雪质量估算的有效观测算子,但需要更好的观测基线来证明统计上的显著改进。

相似文献

6
Hydrologic Remote Sensing and Land Surface Data Assimilation.水文遥感与陆面数据同化
Sensors (Basel). 2008 May 6;8(5):2986-3004. doi: 10.3390/s8052986.

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验