Suppr超能文献

广义部分信用模型的最优设计。

Optimal designs for the generalized partial credit model.

机构信息

Institute of Psychology, University of Münster, Germany.

Institute of Mathematical Stochastics, University of Magdeburg, Germany.

出版信息

Br J Math Stat Psychol. 2019 May;72(2):271-293. doi: 10.1111/bmsp.12148. Epub 2018 Nov 19.

Abstract

Analysing ordinal data is becoming increasingly important in psychology, especially in the context of item response theory. The generalized partial credit model (GPCM) is probably the most widely used ordinal model and has found application in many large-scale educational assessment studies such as PISA. In the present paper, optimal test designs are investigated for estimating persons' abilities with the GPCM for calibrated tests when item parameters are known from previous studies. We find that local optimality may be achieved by assigning non-zero probability only to the first and last categories independently of a person's ability. That is, when using such a design, the GPCM reduces to the dichotomous two-parameter logistic (2PL) model. Since locally optimal designs require the true ability to be known, we consider alternative Bayesian design criteria using weight distributions over the ability parameter space. For symmetric weight distributions, we derive necessary conditions for the optimal one-point design of two response categories to be Bayes optimal. Furthermore, we discuss examples of common symmetric weight distributions and investigate under what circumstances the necessary conditions are also sufficient. Since the 2PL model is a special case of the GPCM, all of these results hold for the 2PL model as well.

摘要

在心理学中,分析有序数据变得越来越重要,特别是在项目反应理论的背景下。广义部分信用模型(GPCM)可能是最广泛使用的有序模型,并且已经在许多大规模的教育评估研究中得到了应用,例如 PISA。在本文中,我们研究了在已知项目参数的情况下,使用 GPCM 对校准测试进行最佳测试设计,以估计被试者的能力。我们发现,通过独立于个人能力仅对第一个和最后一个类别分配非零概率,可以实现局部最优。也就是说,使用这种设计时,GPCM 会简化为二项式二参数逻辑(2PL)模型。由于局部最优设计需要知道真实能力,因此我们考虑了替代的贝叶斯设计标准,使用能力参数空间上的权重分布。对于对称的权重分布,我们推导出了两个响应类别最优单点设计为贝叶斯最优的必要条件。此外,我们还讨论了常见的对称权重分布的例子,并研究了在什么情况下必要条件也是充分的。由于 2PL 模型是 GPCM 的特例,因此所有这些结果也适用于 2PL 模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验