Suppr超能文献

自适应测验中项目补货的最优在线标定设计。

Optimal Online Calibration Designs for Item Replenishment in Adaptive Testing.

机构信息

School of Mathematics and Statistics, Nanjing University of Information Science and Technology, No. 219, Ningliu Road, Nanjing City, Jiangsu Province, 210044, China.

School of Mathematical Sciences, Beijing Normal University, No. 19, Xin Jie Kou Wai Street, Hai Dian District, Beijing, 100875, China.

出版信息

Psychometrika. 2020 Mar;85(1):35-55. doi: 10.1007/s11336-019-09687-0. Epub 2019 Sep 17.

Abstract

The maintenance of item bank is essential for continuously implementing adaptive tests. Calibration of new items online provides an opportunity to efficiently replenish items for the operational item bank. In this study, a new optimal design for online calibration (referred to as D-c) is proposed by incorporating the idea of original D-optimal design into the reformed D-optimal design proposed by van der Linden and Ren (Psychometrika 80:263-288, 2015) (denoted as D-VR design). To deal with the dependence of design criteria on the unknown item parameters of new items, Bayesian versions of the locally optimal designs (e.g., D-c and D-VR) are put forward by adding prior information to the new items. In the simulation implementation of the locally optimal designs, five calibration sample sizes were used to obtain different levels of estimation precision for the initial item parameters, and two approaches were used to obtain the prior distributions in Bayesian optimal designs. Results showed that the D-c design performed well and retired smaller number of new items than the D-VR design at almost all levels of examinee sample size; the Bayesian version of D-c using the prior obtained from the operational items worked better than that using the default priors in BILOG-MG and PARSCALE; and Bayesian optimal designs generally outperformed locally optimal designs when the initial item parameters of the new items were poorly estimated.

摘要

项目库的维护对于持续实施自适应测试至关重要。新题目的在线校准为运营题库的项目补充提供了高效的机会。在本研究中,通过将原始 D 最优设计的思想融入到 van der Linden 和 Ren(Psychometrika 80:263-288, 2015)(简称 D-VR 设计)提出的改进的 D 最优设计中,提出了一种新的在线校准最优设计(简称 D-c)。为了处理设计标准对新项目未知项目参数的依赖性,通过向新项目添加先验信息,提出了局部最优设计(例如 D-c 和 D-VR)的贝叶斯版本。在局部最优设计的仿真实现中,使用了五个校准样本量来获得不同水平的初始项目参数估计精度,并使用两种方法来获得贝叶斯最优设计中的先验分布。结果表明,在几乎所有受测者样本量水平下,D-c 设计的表现都优于 D-VR 设计,因为 D-c 设计退役的新项目数量较少;在使用操作项目获得的先验信息时,D-c 的贝叶斯版本比在 BILOG-MG 和 PARSCALE 中使用默认先验信息的效果更好;当新项目的初始项目参数估计不佳时,贝叶斯最优设计通常优于局部最优设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验