Suppr超能文献

用于骨髓纤维化患者定量脂肪MRI的深度学习辅助骨髓分割

A deep learning aided bone marrow segmentation of quantitative fat MRI for myelofibrosis patients.

作者信息

Tariq Humera, Hadjiiski Lubomir, Malyarenko Dariya, Talpaz Moshe, Pettit Kristen, Luker Gary D, Ross Brian D, Chenevert Thomas L

机构信息

Department of Radiology, University of Michigan, Ann Arbor, MI, United States.

Department of Internal Medicine-Hematology/Oncology, University of Michigan, Ann Arbor, MI, United States.

出版信息

Front Oncol. 2025 May 23;15:1498832. doi: 10.3389/fonc.2025.1498832. eCollection 2025.

Abstract

PURPOSE

To automate bone marrow segmentation within pelvic bones in quantitative fat MRI of myelofibrosis (MF) patients using deep-learning (DL) U-Net models.

METHODS

Automated segmentation of bone marrow (BM) was evaluated for four U-Net models: 2D U-Net, 2D attention U-Net (2D A-U-Net), 3D U-Net and 3D attention U-Net (3D A-U-Net). An experienced annotator performed the delineation on in-phase (IP) pelvic MRI slices to mark the boundaries of BM regions within two pelvic bones: proximal femur and posterior ilium. The dataset comprising volumetric images of 58 MF patients was split into 32 training, 6 validation and 20 test sub-sets. Model performance was assessed using conventional metrics: average Jaccard Index (AJI), average Volume Error (AVE), average Hausdorff Distance (AHD), and average Volume Intersection Ratio (VIR). Iterative model optimization was performed based on maximizing validation sub-set AJI. Wilcoxon's rank sum test with Bonferroni corrected significance threshold of p<0.003 was used to compare DL segmentation models for test sub-set.

RESULTS

2D segmentation models performed best for iliac BM with achieved scores of 95-96% for the VIR and 87-88% for AJI agreement with expert annotations on the test set. Similar performance was observed for femoral BM segmentation with slightly better VIR but worse AJI agreement for U-Net (94% and 86%) versus A-U-Net (92% and 87%). 2D models also exhibited lower AVE variability (8-9%) and ilium AHD (16 mm). The 3D segmentation models have shown marginally higher errors (AHD of 19-20 mm for ilium and 10-12% AVE-SD for both bones) and generally lower agreement scores (VIR of 91-93% for ilium and 89-91% for femur with 85-86% AJI).Pairwise comparison across four U-Nets for three metrics (AHD, AJI, AVE) showed that AJI and AHD performance was not significantly different for 3D U-Net versus 3D A-U-Net and for 2D U-Net versus 2D A-U-Net. Except for AVE, for majority of performance metric comparisons 2D versus 3D model differences were significant in both bones (p<0.001).

CONCLUSION

All four tested U-Net models effectively automated BM segmentation in pelvic MRI of MF patients. The 2D A-U-Net was found best overall for BM segmentation in both femur and ilium.

摘要

目的

使用深度学习(DL)U-Net模型,在骨髓纤维化(MF)患者的定量脂肪MRI中实现骨盆骨内骨髓分割的自动化。

方法

对四种U-Net模型评估骨髓(BM)的自动分割:二维U-Net、二维注意力U-Net(2D A-U-Net)、三维U-Net和三维注意力U-Net(3D A-U-Net)。一位经验丰富的注释者在同相(IP)骨盆MRI切片上进行描绘,以标记两个骨盆骨(股骨近端和髂骨后部)内BM区域的边界。将包含58例MF患者体积图像的数据集分为32个训练子集、6个验证子集和20个测试子集。使用常规指标评估模型性能:平均杰卡德指数(AJI)、平均体积误差(AVE)、平均豪斯多夫距离(AHD)和平均体积交集比(VIR)。基于最大化验证子集AJI进行迭代模型优化。使用威尔科克森秩和检验,校正后的显著性阈值p<0.003,比较测试子集的DL分割模型。

结果

二维分割模型对髂骨BM的表现最佳,在测试集上VIR得分达到95-96%,与专家注释的AJI一致性为87-88%。股骨BM分割也观察到类似的性能,U-Net(94%和86%)的VIR略好,但AJI一致性比A-U-Net(92%和87%)差。二维模型的AVE变异性(8-9%)和髂骨AHD(16毫米)也较低。三维分割模型显示出略高的误差(髂骨AHD为19-20毫米,两块骨的AVE-SD为10-12%),总体一致性得分较低(髂骨VIR为91-93%,股骨VIR为89-91%,AJI为85-86%)。对四个U-Net在三个指标(AHD、AJI、AVE)上进行成对比较,结果显示三维U-Net与三维A-U-Net以及二维U-Net与二维A-U-Net的AJI和AHD性能无显著差异。除AVE外,在大多数性能指标比较中,二维和三维模型在两块骨中的差异均显著(p<0.001)。

结论

所有四个测试的U-Net模型都有效地实现了MF患者骨盆MRI中BM分割的自动化。发现二维A-U-Net在股骨和髂骨的BM分割中总体表现最佳。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0701/12140989/877f01eb05b8/fonc-15-1498832-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验