Suppr超能文献

正交 Cas9-Cas9 嵌合体为基因组编辑提供了一个通用的平台。

Orthogonal Cas9-Cas9 chimeras provide a versatile platform for genome editing.

机构信息

Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA.

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.

出版信息

Nat Commun. 2018 Nov 19;9(1):4856. doi: 10.1038/s41467-018-07310-x.

Abstract

The development of robust, versatile and accurate toolsets is critical to facilitate therapeutic genome editing applications. Here we establish RNA-programmable Cas9-Cas9 chimeras, in single- and dual-nuclease formats, as versatile genome engineering systems. In both of these formats, Cas9-Cas9 fusions display an expanded targeting repertoire and achieve highly specific genome editing. Dual-nuclease Cas9-Cas9 chimeras have distinct advantages over monomeric Cas9s including higher target site activity and the generation of predictable precise deletion products between their target sites. At a therapeutically relevant site within the BCL11A erythroid enhancer, Cas9-Cas9 nucleases produced precise deletions that comprised up to 97% of all sequence alterations. Thus Cas9-Cas9 chimeras represent an important tool that could be particularly valuable for therapeutic genome editing applications where a precise cleavage position and defined sequence end products are desirable.

摘要

开发强大、多功能且精确的工具集对于促进治疗性基因组编辑应用至关重要。在这里,我们建立了 RNA 可编程的 Cas9-Cas9 嵌合体,包括单酶和双酶两种形式,作为多功能基因组工程系统。在这两种形式中,Cas9-Cas9 融合体显示出扩展的靶向谱,并实现了高度特异性的基因组编辑。与单体 Cas9 相比,双酶 Cas9-Cas9 嵌合体具有明显的优势,包括更高的靶位点活性和在靶位点之间产生可预测的精确缺失产物。在 BCL11A 红细胞增强子内的一个治疗相关的位点上,Cas9-Cas9 核酸酶产生了精确的缺失,其中多达 97%的序列改变。因此,Cas9-Cas9 嵌合体代表了一种重要的工具,对于治疗性基因组编辑应用特别有价值,在这些应用中需要精确的切割位置和定义的序列末端产物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c595/6242970/5a5d405ced47/41467_2018_7310_Fig1_HTML.jpg

相似文献

1
Orthogonal Cas9-Cas9 chimeras provide a versatile platform for genome editing.
Nat Commun. 2018 Nov 19;9(1):4856. doi: 10.1038/s41467-018-07310-x.
3
Non-viral delivery of genome-editing nucleases for gene therapy.
Gene Ther. 2017 Mar;24(3):144-150. doi: 10.1038/gt.2016.72. Epub 2016 Oct 31.
4
A 'new lease of life': FnCpf1 possesses DNA cleavage activity for genome editing in human cells.
Nucleic Acids Res. 2017 Nov 2;45(19):11295-11304. doi: 10.1093/nar/gkx783.
5
Beyond Native Cas9: Manipulating Genomic Information and Function.
Trends Biotechnol. 2017 Oct;35(10):983-996. doi: 10.1016/j.tibtech.2017.06.004. Epub 2017 Jul 21.
6
Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
Development. 2013 Dec;140(24):4982-7. doi: 10.1242/dev.099085. Epub 2013 Nov 20.
7
Harnessing the natural diversity and in vitro evolution of Cas9 to expand the genome editing toolbox.
Curr Opin Microbiol. 2017 Jun;37:88-94. doi: 10.1016/j.mib.2017.05.009. Epub 2017 Jun 20.
8
Generating a Genome Editing Nuclease for Targeted Mutagenesis in Human Cells.
Methods Mol Biol. 2017;1498:153-162. doi: 10.1007/978-1-4939-6472-7_10.
9
Development of an Efficient Genome Editing Method by CRISPR/Cas9 in a Fish Cell Line.
Mar Biotechnol (NY). 2016 Aug;18(4):449-52. doi: 10.1007/s10126-016-9708-6. Epub 2016 May 28.

引用本文的文献

1
Cas9 RNP Physiochemical Analysis for Enhanced CRISPR-AuNP Assembly and Function.
bioRxiv. 2024 Apr 2:2024.04.02.586657. doi: 10.1101/2024.04.02.586657.
2
CRISPR/Cas9 Landscape: Current State and Future Perspectives.
Int J Mol Sci. 2023 Nov 8;24(22):16077. doi: 10.3390/ijms242216077.
3
Epitope editing enables targeted immunotherapy of acute myeloid leukaemia.
Nature. 2023 Sep;621(7978):404-414. doi: 10.1038/s41586-023-06496-5. Epub 2023 Aug 30.
4
High-capacity adenovector delivery of forced CRISPR-Cas9 heterodimers fosters precise chromosomal deletions in human cells.
Mol Ther Nucleic Acids. 2023 Feb 22;31:746-762. doi: 10.1016/j.omtn.2023.02.025. eCollection 2023 Mar 14.
6
Genome-wide detection of CRISPR editing in vivo using GUIDE-tag.
Nat Commun. 2022 Jan 21;13(1):437. doi: 10.1038/s41467-022-28135-9.
7
Generation of in situ CRISPR-mediated primary and metastatic cancer from monkey liver.
Signal Transduct Target Ther. 2021 Dec 3;6(1):411. doi: 10.1038/s41392-021-00799-7.
10
Improved prime editors enable pathogenic allele correction and cancer modelling in adult mice.
Nat Commun. 2021 Apr 9;12(1):2121. doi: 10.1038/s41467-021-22295-w.

本文引用的文献

1
NmeCas9 is an intrinsically high-fidelity genome-editing platform.
Genome Biol. 2018 Dec 5;19(1):214. doi: 10.1186/s13059-018-1591-1.
2
The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.
Mol Cell. 2017 Oct 5;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.
3
A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9.
Sci Adv. 2017 Aug 4;3(8):eaao0027. doi: 10.1126/sciadv.aao0027. eCollection 2017 Aug.
4
The changing landscape of gene editing in hematopoietic stem cells: a step towards Cas9 clinical translation.
Curr Opin Hematol. 2017 Nov;24(6):481-488. doi: 10.1097/MOH.0000000000000385.
5
Non-homologous DNA end joining and alternative pathways to double-strand break repair.
Nat Rev Mol Cell Biol. 2017 Aug;18(8):495-506. doi: 10.1038/nrm.2017.48. Epub 2017 May 17.
6
GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.
BMC Genomics. 2017 May 15;18(1):379. doi: 10.1186/s12864-017-3746-y.
7
Refining strategies to translate genome editing to the clinic.
Nat Med. 2017 Apr 3;23(4):415-423. doi: 10.1038/nm.4313.
9
Long-Term Engraftment and Fetal Globin Induction upon Gene Editing in Bone-Marrow-Derived CD34 Hematopoietic Stem and Progenitor Cells.
Mol Ther Methods Clin Dev. 2017 Jan 11;4:137-148. doi: 10.1016/j.omtm.2016.12.009. eCollection 2017 Mar 17.
10
Applications of CRISPR technologies in research and beyond.
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验