Suppr超能文献

革命仍在继续:新发现的系统扩展了CRISPR-Cas工具包。

The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.

作者信息

Murugan Karthik, Babu Kesavan, Sundaresan Ramya, Rajan Rakhi, Sashital Dipali G

机构信息

Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.

Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.

出版信息

Mol Cell. 2017 Oct 5;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.

Abstract

CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems.

摘要

CRISPR-Cas系统保护原核生物免受噬菌体和移动遗传元件的侵害,并作为基因工程革命性工具的基础。2类CRISPR-Cas系统使用与引导RNA配对的单个Cas核酸内切酶来切割互补核酸靶标,从而以最少的机制实现可编程的序列特异性靶向。最近对以前未鉴定的CRISPR-Cas系统的发现揭示了除了特征明确的II型Cas9系统之外的大量潜在生物技术工具。在这里,我们回顾了目前对新发现的单蛋白Cas核酸内切酶的机制理解。这些Cas效应器的比较揭示了显著的机制多样性,强调了相关CRISPR-Cas系统的系统发育差异。这种多样性使得CRISPR-Cas生物技术工具包得以进一步扩展,具有从基因组编辑到基于各种Cas核酸内切酶活性的诊断工具等广泛应用。这些进展突出了基于不断扩展的CRISPR-Cas系统集的未来工具的令人兴奋的前景。

相似文献

1
The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit.
Mol Cell. 2017 Oct 5;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.
2
Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.
3
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
4
The Anti-CRISPR Story: A Battle for Survival.
Mol Cell. 2017 Oct 5;68(1):8-14. doi: 10.1016/j.molcel.2017.09.002.
5
Advances in Industrial Biotechnology Using CRISPR-Cas Systems.
Trends Biotechnol. 2018 Feb;36(2):134-146. doi: 10.1016/j.tibtech.2017.07.007. Epub 2017 Aug 1.
6
CRISPR-Based Technologies: Impact of RNA-Targeting Systems.
Mol Cell. 2018 Nov 1;72(3):404-412. doi: 10.1016/j.molcel.2018.09.018.
7
CRISPR/Cas9 in Genome Editing and Beyond.
Annu Rev Biochem. 2016 Jun 2;85:227-64. doi: 10.1146/annurev-biochem-060815-014607. Epub 2016 Apr 25.
8
Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub 2018 May 7.
9
[CRISPR/CAS9, the King of Genome Editing Tools].
Mol Biol (Mosk). 2017 Jul-Aug;51(4):582-594. doi: 10.7868/S0026898417040036.
10
Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling.
Proteins. 2017 Feb;85(2):342-353. doi: 10.1002/prot.25229. Epub 2017 Jan 5.

引用本文的文献

1
A Cas12a Toolbox for Rapid and Flexible Group B Genomic Editing and CRISPRi.
bioRxiv. 2025 Jun 24:2025.06.20.660720. doi: 10.1101/2025.06.20.660720.
3
Structural basis for RNA-guided DNA degradation by Cas5-HNH/Cascade complex.
Nat Commun. 2025 Feb 4;16(1):1335. doi: 10.1038/s41467-024-55716-7.
4
Applications of CRISPR Technologies in Forestry and Molecular Wood Biotechnology.
Int J Mol Sci. 2024 Nov 2;25(21):11792. doi: 10.3390/ijms252111792.
5
CRISPR-Cas13-mediated RNA editing in the silkworm .
Zool Res. 2024 Nov 18;45(6):1249-1260. doi: 10.24272/j.issn.2095-8137.2024.105.
6
Genome editing using type I-E CRISPR-Cas3 in mice and rat zygotes.
Cell Rep Methods. 2024 Aug 19;4(8):100833. doi: 10.1016/j.crmeth.2024.100833. Epub 2024 Aug 8.
8
CRISPR-Cas12a exhibits metal-dependent specificity switching.
Nucleic Acids Res. 2024 Sep 9;52(16):9343-9359. doi: 10.1093/nar/gkae613.
10
Emerging Gene Therapeutics for Epidermolysis Bullosa under Development.
Int J Mol Sci. 2024 Feb 13;25(4):2243. doi: 10.3390/ijms25042243.

本文引用的文献

1
Enhanced proofreading governs CRISPR-Cas9 targeting accuracy.
Nature. 2017 Oct 19;550(7676):407-410. doi: 10.1038/nature24268. Epub 2017 Sep 20.
2
A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9.
Sci Adv. 2017 Aug 4;3(8):eaao0027. doi: 10.1126/sciadv.aao0027. eCollection 2017 Aug.
3
The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a.
Cell. 2017 Aug 10;170(4):714-726.e10. doi: 10.1016/j.cell.2017.06.050. Epub 2017 Jul 27.
4
The Discovery, Mechanisms, and Evolutionary Impact of Anti-CRISPRs.
Annu Rev Virol. 2017 Sep 29;4(1):37-59. doi: 10.1146/annurev-virology-101416-041616. Epub 2017 Jul 27.
5
Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
Nature. 2017 Aug 31;548(7669):543-548. doi: 10.1038/nature23467. Epub 2017 Jul 19.
6
A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems.
Science. 2017 Aug 11;357(6351):605-609. doi: 10.1126/science.aao0100. Epub 2017 Jun 29.
7
Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells.
Nat Chem Biol. 2017 Aug;13(8):839-841. doi: 10.1038/nchembio.2410. Epub 2017 Jun 19.
8
Multiplex gene regulation by CRISPR-ddCpf1.
Cell Discov. 2017 Jun 6;3:17018. doi: 10.1038/celldisc.2017.18. eCollection 2017.
9
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
10
Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage.
Nature. 2017 Jun 22;546(7659):559-563. doi: 10.1038/nature22398. Epub 2017 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验