Murugan Karthik, Babu Kesavan, Sundaresan Ramya, Rajan Rakhi, Sashital Dipali G
Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, USA.
Mol Cell. 2017 Oct 5;68(1):15-25. doi: 10.1016/j.molcel.2017.09.007.
CRISPR-Cas systems defend prokaryotes against bacteriophages and mobile genetic elements and serve as the basis for revolutionary tools for genetic engineering. Class 2 CRISPR-Cas systems use single Cas endonucleases paired with guide RNAs to cleave complementary nucleic acid targets, enabling programmable sequence-specific targeting with minimal machinery. Recent discoveries of previously unidentified CRISPR-Cas systems have uncovered a deep reservoir of potential biotechnological tools beyond the well-characterized Type II Cas9 systems. Here we review the current mechanistic understanding of newly discovered single-protein Cas endonucleases. Comparison of these Cas effectors reveals substantial mechanistic diversity, underscoring the phylogenetic divergence of related CRISPR-Cas systems. This diversity has enabled further expansion of CRISPR-Cas biotechnological toolkits, with wide-ranging applications from genome editing to diagnostic tools based on various Cas endonuclease activities. These advances highlight the exciting prospects for future tools based on the continually expanding set of CRISPR-Cas systems.
CRISPR-Cas系统保护原核生物免受噬菌体和移动遗传元件的侵害,并作为基因工程革命性工具的基础。2类CRISPR-Cas系统使用与引导RNA配对的单个Cas核酸内切酶来切割互补核酸靶标,从而以最少的机制实现可编程的序列特异性靶向。最近对以前未鉴定的CRISPR-Cas系统的发现揭示了除了特征明确的II型Cas9系统之外的大量潜在生物技术工具。在这里,我们回顾了目前对新发现的单蛋白Cas核酸内切酶的机制理解。这些Cas效应器的比较揭示了显著的机制多样性,强调了相关CRISPR-Cas系统的系统发育差异。这种多样性使得CRISPR-Cas生物技术工具包得以进一步扩展,具有从基因组编辑到基于各种Cas核酸内切酶活性的诊断工具等广泛应用。这些进展突出了基于不断扩展的CRISPR-Cas系统集的未来工具的令人兴奋的前景。