Singh Angadjit, Kamboj Varun S, Liu Jieyi, Llandro Justin, Duffy Liam B, Senanayak Satyaprasad P, Beere Harvey E, Ionescu Adrian, Ritchie David A, Hesjedal Thorsten, Barnes Crispin H W
Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, United Kingdom.
Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
Sci Rep. 2018 Nov 19;8(1):17024. doi: 10.1038/s41598-018-35118-8.
Ferromagnetic ordering in a topological insulator can break time-reversal symmetry, realizing dissipationless electronic states in the absence of a magnetic field. The control of the magnetic state is of great importance for future device applications. We provide a detailed systematic study of the magnetic state in highly doped CrSbTe thin films using electrical transport, magneto-optic Kerr effect measurements and terahertz time domain spectroscopy, and also report an efficient electric gating of ferromagnetic order using the electrolyte ionic liquid [DEME][TFSI]. Upon increasing the Cr concentration from x = 0.15 to 0.76, the Curie temperature (T) was observed to increase by ~5 times to 176 K. In addition, it was possible to modify the magnetic moment by up to 50% with a gate bias variation of just ±3 V, which corresponds to an increase in carrier density by 50%. Further analysis on a sample with x = 0.76 exhibits a clear insulator-metal transition at T, indicating the consistency between the electrical and optical measurements. The direct correlation obtained between the carrier density and ferromagnetism - in both electrostatic and chemical doping - using optical and electrical means strongly suggests a carrier-mediated Ruderman-Kittel-Kasuya-Yoshida (RKKY) coupling scenario. Our low-voltage means of manipulating ferromagnetism, and consistency in optical and electrical measurements provides a way to realize exotic quantum states for spintronic and low energy magneto-electronic device applications.
拓扑绝缘体中的铁磁序可以打破时间反演对称性,在没有磁场的情况下实现无耗散电子态。磁态的控制对于未来的器件应用至关重要。我们使用电输运、磁光克尔效应测量和太赫兹时域光谱对高掺杂CrSbTe薄膜中的磁态进行了详细的系统研究,并报告了使用电解质离子液体[DEME][TFSI]对铁磁序进行有效电门控的方法。将Cr浓度从x = 0.15增加到0.76时,观察到居里温度(T)增加了约5倍,达到176 K。此外,仅通过±3 V的栅极偏置变化就可以将磁矩改变多达50%,这对应于载流子密度增加50%。对x = 0.76的样品进行的进一步分析表明,在T处存在明显的绝缘体-金属转变,这表明电学和光学测量结果具有一致性。使用光学和电学手段在静电掺杂和化学掺杂中获得的载流子密度与铁磁性之间的直接相关性强烈表明了载流子介导的Ruderman-Kittel-Kasuya-Yoshida(RKKY)耦合情况。我们操纵铁磁性的低电压方法以及光学和电学测量的一致性为自旋电子学和低能磁电子器件应用实现奇异量子态提供了一种途径。