Universidad de Málaga, Andalucía Tech, Facultad de Ciencias, Departamento de Química Física, Unidad Asociada CSIC, 29071-Málaga, Spain.
Phys Chem Chem Phys. 2018 Nov 28;20(46):29430-29439. doi: 10.1039/c8cp05623d.
Surface-enhanced Raman scattering (SERS) spectroscopy of pyridazine shows the selective enhancement of the bands recorded at about 1570, 1450 and 380 cm-1, which are assigned to two different types of vibrations. The first two correspond to in-plane 8a;νring and 19b;δ(CH) totally symmetric A1 modes, respectively, while the last band is assigned to the out-of-plane 16b;τring,B1 vibration. The selective enhancement has been analyzed on the basis of a resonant Raman process involving photoexcited metal (M)-to-molecule (A) charge transfer (CT: M-A + hν → M+-A-) states of the metal-adsorbate surface complex, which have also been related to the doublet electronic states of the corresponding radical anion of the adsorbate (A-). According to the selection rules of the electromagnetic/plasmonic SERS enhancement mechanism, the simultaneous enhancement of in-plane and out-of-plane modes could be attributed to different orientations of the adsorbate (perpendicular and parallel, respectively, or tilted) with respect to the metallic surface. The calculated resonance Raman-CT spectra (SERS-CT) and the vibrational wavenumbers of isolated pyridazine and of the pyridazine-Ag2 complex obtained from electronic structure calculations suggest a single type of molecule adsorbed with perpendicular orientation. The relative SERS enhancements of both in-plane and out-of-plane modes are due to Franck-Condon factors related to differences between the equilibrium geometries (A1 vibrations, ΔQ ≠ 0) and gradients (B1 vibrations, Δν ≠ 0 and ΔQ ≠ 0), respectively, of the potential energy surfaces of the involved ground and photoinduced CT electronic states. Therefore, the selective enhancement of the SERS bands of pyridazine is controlled by a general metal-to-molecule resonant CT mechanism. This conclusion supports the usefulness of SERS in studying the subtle electronic structure of charged interfaces as well as key processes such as electron transfer at the nanoscale.
吡嗪的表面增强拉曼散射(SERS)光谱显示,在约 1570、1450 和 380 cm-1 处记录的谱带得到了选择性增强,这些谱带被分配给两种不同类型的振动。前两个分别对应于面内 8a;νring 和 19b;δ(CH)完全对称的 A1 模式,而最后一个带则被分配到面外 16b;τring,B1 振动。选择性增强是基于涉及金属(M)到分子(A)的光激发电荷转移(CT:M-A + hν → M+-A-)金属-吸附物表面络合物的共振拉曼过程进行分析的,该过程也与吸附物的相应自由基阴离子的双峰电子态(A-)有关。根据电磁/等离子体 SERS 增强机制的选择规则,面内和面外模式的同时增强可归因于吸附物(分别垂直和平行或倾斜)相对于金属表面的不同取向。根据电子结构计算得到的计算共振拉曼 CT 光谱(SERS-CT)和孤立吡嗪以及吡嗪-Ag2 配合物的振动波数表明,存在一种具有垂直取向的吸附分子。面内和面外模式的相对 SERS 增强归因于与参与的基态和光诱导 CT 电子态的平衡几何形状(A1 振动,ΔQ ≠ 0)和梯度(B1 振动,Δν ≠ 0 和 ΔQ ≠ 0)之间差异相关的 Franck-Condon 因子分别为涉及的势能面。因此,吡嗪的 SERS 带的选择性增强受一般的金属-分子共振 CT 机制控制。这一结论支持了 SERS 在研究带电荷界面的微妙电子结构以及纳米尺度上的电子转移等关键过程中的有用性。