Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium.
Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium.
J Bone Miner Res. 2019 Feb;34(2):333-348. doi: 10.1002/jbmr.3599. Epub 2018 Nov 19.
Tissue engineering holds great promise for bone regenerative medicine, but clinical translation remains challenging. An important factor is the low cell survival after implantation, primarily caused by the lack of functional vasculature at the bone defect. Interestingly, bone development and repair initiate predominantly via an avascular cartilage template, indicating that chondrocytes are adapted to limited vascularization. Given these advantageous properties of chondrocytes, we questioned whether tissue-engineered cartilage intermediates implanted ectopically in mice are able to form bone, even when the volume size increases. Here, we show that endochondral ossification proceeds efficiently when implant size is limited (≤30 mm ), but chondrogenesis and matrix synthesis are impaired in the center of larger implants, leading to a fibrotic core. Increasing the level of angiogenic growth factors does not improve this outcome, because this strategy enhances peripheral bone formation, but disrupts the conversion of cartilage into bone in the center, resulting in a fibrotic core, even in small implants. On the other hand, activation of hypoxia signaling in cells before implantation stimulates chondrogenesis and matrix production, which culminates in enhanced bone formation throughout the entire implant. Together, our results show that induction of angiogenesis alone may lead to adverse effects during endochondral bone repair, whereas activation of hypoxia signaling represents a superior therapeutic strategy to improve endochondral bone regeneration in large tissue-engineered implants. © 2018 American Society for Bone and Mineral Research.
组织工程学为骨再生医学带来了巨大的希望,但临床转化仍然具有挑战性。一个重要因素是植入后细胞存活率低,主要是由于骨缺损处缺乏功能性脉管系统。有趣的是,骨的发育和修复主要通过无血管的软骨模板启动,这表明软骨细胞适应于有限的血管化。鉴于软骨细胞的这些有利特性,我们质疑在异位植入小鼠体内的组织工程软骨中间体能否形成骨,即使体积增大。在这里,我们表明,当植入物的尺寸有限(≤30mm)时,软骨内成骨过程会有效地进行,但在较大植入物的中心,软骨生成和基质合成会受损,导致纤维核心形成。增加血管生成生长因子的水平并不能改善这种结果,因为这种策略增强了外围骨的形成,但破坏了中心软骨向骨的转化,导致纤维核心形成,即使在小植入物中也是如此。另一方面,在植入前激活细胞中的缺氧信号会刺激软骨生成和基质产生,最终导致整个植入物中骨形成的增强。总之,我们的结果表明,单独诱导血管生成可能会在软骨内骨修复过程中产生不良影响,而激活缺氧信号则代表了改善大型组织工程植入物软骨内骨再生的优越治疗策略。