Department of NMR based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280/CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Villeurbanne, France.
Chemphyschem. 2019 Jan 21;20(2):302-310. doi: 10.1002/cphc.201800793. Epub 2018 Dec 13.
Determination of the environment surrounding a protein is often key to understanding its function and can also be used to infer the structural properties of the protein. By using proton-detected solid-state NMR, we show that reduced spin diffusion within the protein under conditions of fast magic-angle spinning, high magnetic field, and sample deuteration allows the efficient measurement of site-specific exposure to mobile water and lipids. We demonstrate this site specificity on two membrane proteins, the human voltage dependent anion channel, and the alkane transporter AlkL from Pseudomonas putida. Transfer from lipids is observed selectively in the membrane spanning region, and an average lipid-protein transfer rate of 6 s was determined for residues protected from exchange. Transfer within the protein, as tracked in the N- H 2D plane, was estimated from initial rates and found to be in a similar range of about 8 to 15 s for several resolved residues, explaining the site specificity.
确定蛋白质周围的环境通常是理解其功能的关键,也可用于推断蛋白质的结构性质。通过使用质子检测固态 NMR,我们表明在快速魔角旋转、高磁场和样品氘化的条件下,蛋白质内的自旋扩散减少,允许高效测量蛋白质对可移动水和脂质的特定暴露。我们在两种膜蛋白上证明了这种位点特异性,即人电压依赖性阴离子通道和来自假单胞菌的烷烃转运蛋白 AlkL。从脂质的转移仅在跨膜区域选择性观察到,并且对于受交换保护的残基,确定了平均脂质-蛋白质转移速率为 6 s。在 N- H 2D 平面中跟踪的蛋白质内转移,通过初始速率进行估计,对于几个分辨出的残基,发现其范围相似,约为 8 到 15 s,这解释了位点特异性。