Mithu Venus Singh, Giller Karin, Nimerovsky Evgeny, Overkamp Kerstin, Andreas Loren B, Becker Stefan, Griesinger Christian
Department of NMR-based Structural Biology, Max Planck Institute of Multidisciplinary Sciences, Göttingen 37077, Germany.
J Am Chem Soc. 2025 Aug 13;147(32):28943-28954. doi: 10.1021/jacs.5c06971. Epub 2025 Aug 1.
Physiologically relevant in vitro models of amyloid aggregation are essential for linking structural insights to disease pathology. In type 2 diabetes, aggregation of human islet amyloid polypeptide (hIAPP) into fibrils is a hallmark of β-cell dysfunction, yet structural data on ex vivo hIAPP fibrils remain unavailable. Most models use solution-grown fibrils, overlooking membrane interactions and native pH, which underscores the need for more realistic in vitro models. Here, we use solid-state NMR spectroscopy to determine the structure of phospholipid membrane-mediated hIAPP fibrils formed under extracellular (pH 7.4) conditions. These fibrils are homogeneous and adopt an L-shaped protofilament architecture with an extended N-terminal β-strand─a region often unresolved in cryo-EM. The fibril core (N14-L27) adopts the CF1 fold, a conserved β-arch also seen in nonlipidic fibrils, suggesting its relevance in disease. In contrast, fibrils formed at intracellular pH (5.3) are structurally heterogeneous and show distinct structural differences in the C-terminus. hIAPP must exhibit substantial structural plasticity in the membrane environment, transitioning from helical monomers to β-hairpin oligomers and ultimately to β-arch-rich fibrils─transitions that may introduce energy barriers stabilizing toxic intermediates. Our findings provide the first high-resolution structure of membrane-mediated hIAPP fibrils highlighting the need to model aggregation under physiologically relevant conditions.
淀粉样蛋白聚集的生理相关体外模型对于将结构见解与疾病病理学联系起来至关重要。在2型糖尿病中,人胰岛淀粉样多肽(hIAPP)聚集成纤维是β细胞功能障碍的一个标志,但关于体外hIAPP纤维的结构数据仍然无法获得。大多数模型使用溶液生长的纤维,忽略了膜相互作用和生理pH值,这突出了需要更现实的体外模型。在这里,我们使用固态核磁共振光谱来确定在细胞外(pH 7.4)条件下形成的磷脂膜介导的hIAPP纤维的结构。这些纤维是均匀的,采用L形原纤维结构,具有延伸的N端β链——这一区域在冷冻电镜中常常无法解析。纤维核心(N14-L27)采用CF1折叠,这是一种在非脂质纤维中也可见的保守β拱,表明其与疾病的相关性。相比之下,在细胞内pH值(5.3)下形成的纤维在结构上是异质的,并且在C端显示出明显的结构差异。hIAPP在膜环境中必须表现出显著的结构可塑性,从螺旋单体转变为β发夹寡聚体,最终转变为富含β拱的纤维——这些转变可能会引入能量屏障来稳定有毒中间体。我们的研究结果提供了膜介导的hIAPP纤维的首个高分辨率结构,突出了在生理相关条件下模拟聚集的必要性。