Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Department of Cellular Logistics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
Nat Commun. 2022 Mar 21;13(1):1494. doi: 10.1038/s41467-022-28821-8.
Cohesive FG domains assemble into a condensed phase forming the selective permeability barrier of nuclear pore complexes. Nanoscopic insight into fundamental cohesive interactions has long been hampered by the sequence heterogeneity of native FG domains. We overcome this challenge by utilizing an engineered perfectly repetitive sequence and a combination of solution and magic angle spinning NMR spectroscopy. We map the dynamics of cohesive interactions in both phase-separated and soluble states at atomic resolution using TROSY for rotational correlation time (TRACT) measurements. We find that FG repeats exhibit nanosecond-range rotational correlation times and remain disordered in both states, although FRAP measurements show slow translation of phase-separated FG domains. NOESY measurements enable the direct detection of contacts involved in cohesive interactions. Finally, increasing salt concentration and temperature enhance phase separation and decrease local mobility of FG repeats. This lower critical solution temperature (LCST) behaviour indicates that cohesive interactions are driven by entropy.
凝聚的 FG 结构域组装成一个凝聚相,形成核孔复合物的选择性渗透屏障。长期以来,由于天然 FG 结构域的序列异质性,对基本凝聚相互作用的纳米级洞察力一直受到阻碍。我们通过利用工程化的完全重复序列和溶液和魔角旋转 NMR 光谱学的组合来克服这一挑战。我们使用 TROSY 进行旋转相关时间 (TRACT) 测量,在原子分辨率下绘制分相和可溶状态下凝聚相互作用的动力学。我们发现 FG 重复序列表现出纳秒范围的旋转相关时间,并且在两种状态下都保持无序,尽管 FRAP 测量显示分相 FG 结构域的缓慢平移。NOESY 测量能够直接检测到凝聚相互作用中涉及的接触。最后,增加盐浓度和温度会促进相分离并降低 FG 重复的局部流动性。这种较低的临界溶液温度 (LCST) 行为表明凝聚相互作用是由熵驱动的。