Suppr超能文献

基于时间序列数据的 LSTM-FCN 在资源高效宠物狗声音事件分类中的应用。

Resource-Efficient Pet Dog Sound Events Classification Using LSTM-FCN Based on Time-Series Data.

机构信息

Department of Computer Convergence Software, Korea University, Sejong City 30019, Korea.

出版信息

Sensors (Basel). 2018 Nov 18;18(11):4019. doi: 10.3390/s18114019.

Abstract

The use of IoT (Internet of Things) technology for the management of pet dogs left alone at home is increasing. This includes tasks such as automatic feeding, operation of play equipment, and location detection. Classification of the vocalizations of pet dogs using information from a sound sensor is an important method to analyze the behavior or emotions of dogs that are left alone. These sounds should be acquired by attaching the IoT sound sensor to the dog, and then classifying the sound events (e.g., barking, growling, howling, and whining). However, sound sensors tend to transmit large amounts of data and consume considerable amounts of power, which presents issues in the case of resource-constrained IoT sensor devices. In this paper, we propose a way to classify pet dog sound events and improve resource efficiency without significant degradation of accuracy. To achieve this, we only acquire the intensity data of sounds by using a relatively resource-efficient noise sensor. This presents issues as well, since it is difficult to achieve sufficient classification accuracy using only intensity data due to the loss of information from the sound events. To address this problem and avoid significant degradation of classification accuracy, we apply long short-term memory-fully convolutional network (LSTM-FCN), which is a deep learning method, to analyze time-series data, and exploit bicubic interpolation. Based on experimental results, the proposed method based on noise sensors (i.e., Shapelet and LSTM-FCN for time-series) was found to improve energy efficiency by 10 times without significant degradation of accuracy compared to typical methods based on sound sensors (i.e., mel-frequency cepstrum coefficient (MFCC), spectrogram, and mel-spectrum for feature extraction, and support vector machine (SVM) and k-nearest neighbor (K-NN) for classification).

摘要

物联网 (IoT) 技术在家中独自留下的宠物狗管理中的应用越来越多。这包括自动喂食、游乐设备操作和位置检测等任务。使用声音传感器的信息对宠物狗的叫声进行分类是分析独自留下的狗的行为或情绪的重要方法。这些声音应该通过将物联网声音传感器附在狗身上来获取,然后对声音事件(例如,吠叫、咆哮、嚎叫和哀鸣)进行分类。然而,声音传感器往往会传输大量数据并消耗相当多的电量,这在资源受限的物联网传感器设备中存在问题。在本文中,我们提出了一种在不显著降低准确性的情况下对宠物狗声音事件进行分类并提高资源效率的方法。为此,我们仅通过使用相对资源高效的噪声传感器来获取声音的强度数据。这也存在问题,因为由于声音事件的信息丢失,仅使用强度数据很难实现足够的分类准确性。为了解决这个问题并避免分类准确性的显著下降,我们应用了长短期记忆-全卷积网络 (LSTM-FCN),这是一种深度学习方法,用于分析时间序列数据,并利用双三次插值。基于实验结果,与典型的基于声音传感器的方法(即,梅尔频率倒谱系数 (MFCC)、频谱图和梅尔谱用于特征提取,以及支持向量机 (SVM) 和 K-最近邻 (K-NN) 用于分类)相比,基于噪声传感器的(即,形状向量和用于时间序列的 LSTM-FCN)提出的方法在不显著降低准确性的情况下提高了 10 倍的能量效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b101/6263678/97ea87e336fe/sensors-18-04019-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验