Laboratory for Single Molecular Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
Laboratory for Cell Signaling Dynamics, Center for Biosystems Dynamics Research, RIKEN, Suita, Osaka, 565-0874, Japan.
Biochem Biophys Res Commun. 2018 Dec 9;507(1-4):304-310. doi: 10.1016/j.bbrc.2018.11.029. Epub 2018 Nov 17.
The wide range sensing of extracellular signals is a common feature of various sensory cells. Eukaryotic chemotactic cells driven by GPCRs and their cognate G proteins are one example. This system endows the cells directional motility towards their destination over long distances. There are several mechanisms to achieve the long dynamic range, including negative regulation of the receptors upon ligand interaction and spatial regulation of G proteins, as we found recently. However, these mechanisms are insufficient to explain the 10-fold range of chemotaxis seen in Dictyostelium. Here, we reveal that the receptor-mediated activation, recruitment, and capturing of G proteins mediate chemotactic signaling at the lower, middle and higher concentration ranges, respectively. These multiple mechanisms of G protein dynamics can successfully cover distinct ranges of ligand concentrations, resulting in seamless and broad chemotaxis. Furthermore, single-molecule imaging analysis showed that the activated Gα subunit forms an unconventional complex with the agonist-bound receptor. This complex formation of GPCR-Gα increased the membrane-binding time of individual Gα molecules and therefore resulted in the local accumulation of Gα. Our findings provide an additional chemotactic dynamic range mechanism in which multiple G protein dynamics positively contribute to the production of gradient information.
细胞外信号的广泛感应是各种感觉细胞的共同特征。受 GPCR 和其同源 G 蛋白驱动的真核趋化细胞就是一个例子。该系统赋予细胞朝向其目的地的定向运动能力,即使在长距离的情况下也能实现。我们最近发现,有几种机制可以实现长动态范围,包括配体相互作用时受体的负调节和 G 蛋白的空间调节。然而,这些机制不足以解释在盘基网柄菌中观察到的 10 倍趋化范围。在这里,我们揭示了受体介导的 G 蛋白的激活、募集和捕获分别介导了较低、中和较高浓度范围内的趋化信号转导。这些 G 蛋白动力学的多种机制可以成功覆盖不同的配体浓度范围,从而实现无缝且广泛的趋化性。此外,单分子成像分析表明,激活的 Gα 亚基与激动剂结合的受体形成一种非传统的复合物。这种 GPCR-Gα 的复合物形成增加了单个 Gα 分子的膜结合时间,从而导致 Gα 的局部积累。我们的发现提供了一种额外的趋化动力学范围机制,其中多种 G 蛋白动力学积极有助于产生梯度信息。