Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
J Genet Genomics. 2018 Nov 20;45(11):621-638. doi: 10.1016/j.jgg.2018.09.004. Epub 2018 Nov 6.
Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.
表观遗传学是指研究基因功能的可遗传变化,而这些变化不涉及 DNA 序列的改变。这种对细胞和生理表型特征的影响可能来自外部或环境因素,也可能是正常发育程序的一部分。在真核生物中,DNA 缠绕在组蛋白八聚体(H2A、H2B、H3 和 H4 的两个拷贝)上形成核小体,这是染色质的基本单位。染色质的结构通过多种表观遗传机制进行动态调节,包括 DNA 甲基化、组蛋白翻译后修饰(PTMs)、染色质重塑和非编码 RNA。作为基因表达的保守调控机制,表观遗传机制参与了从基础发育到环境响应的几乎所有重要生物学过程。重要的是,哺乳动物中所有主要的表观遗传机制也存在于植物中。植物研究为表观遗传研究提供了许多重要的贡献。例如,印迹,一种亲本等位基因特异性基因表达的机制,最初在玉米中观察到;顺式失活,一种一个等位基因在一个基因座中作用以诱导另一个等位基因的可遗传变化的表观遗传现象,最初在玉米和番茄中报道;此外,一些独特的表观遗传机制在植物中进化。例如,24nt siRNA 参与的 RNA 指导的 DNA 甲基化(RdDM)途径是植物特有的,因为涉及到两个植物特有的 DNA 依赖性 RNA 聚合酶,Pol IV 和 Pol V。对表观遗传机制的深入研究对于提高作物农艺性状和环境适应性具有重要意义。在这篇综述中,我们简要总结了过去几十年中国在植物表观遗传学领域取得的重要进展,并对未来的研究前景进行了简要展望。我们的综述重点放在 DNA 甲基化和组蛋白 PTMs 上,这是表观遗传机制的两个最重要方面。