Phelps Charles, Madhavan Guruprasad
1University of Rochester, Rochester, NY USA.
2National Academies of Science, Engineering and Medicine, Washington, DC USA.
Cost Eff Resour Alloc. 2018 Nov 9;16(Suppl 1):48. doi: 10.1186/s12962-018-0128-5. eCollection 2018.
Cost-benefit and cost-effectiveness analysis place limits on the dimensions of value that the models can incorporate. Cost-benefit analysis requires monetization of all measures of value (including life), a task sometimes deemed either difficult to accomplish or even repugnant. Cost-effectiveness analyses include health care gains in natural units (e.g., quality-adjusted life years or QALYs) rather than purely monetizing them (e.g., in dollars) and offers an efficiency perspective based on the ratio of cost per QALYs or similar health measures. These two methods use different rules for investment. Cost-benefit analysis says to invest whenever benefits exceed costs. Cost-effectiveness analysis says to invest if the intervention has a cost per QALY that meets-or is below-a designated cutoff value.
Multi-criteria frameworks expand decision analyses by considering value tradeoffs from decision makers, and then producing a synthetic measure that summarizes the performance of investment options. This evaluation is done across all chosen dimensions of value, based on the weights provided by the decision makers, but this flexibility comes at a cost. To date, no approach is widely accepted to suggest how much to invest (how to determine a budget constraint) using multi-attribute models. Moreover, there is no agreed-upon method to measure willingness to pay for incremental multi-attribute value improvements. Our paper proposes a way forward.
Based on existing dollar estimates of willingness to pay for QALYs, our concept creates a comparable cutoff for multi-criteria value measures. Our proposed method expands the acceptable cost per QALYs in proportion to how much of the total measure is accounted for by the QALY component. Agreed-upon values for cost per QALY are thus extrapolated to account for extra value created by non-QALY attributes of each intervention.
Using our proposed methods, the cost per QALY cutoff can serve as a benchmark toward creating a resource allocation cutoff in multi-criteria frameworks.
成本效益分析和成本效果分析对模型能够纳入的价值维度设置了限制。成本效益分析要求对所有价值衡量指标(包括生命)进行货币化,这项任务有时被认为难以完成甚至令人反感。成本效果分析采用自然单位(如质量调整生命年或QALY)来衡量医疗保健收益,而不是单纯将其货币化(如以美元计),并基于每QALY或类似健康指标的成本比率提供一种效率视角。这两种方法采用不同的投资规则。成本效益分析表明,只要收益超过成本就进行投资。成本效果分析则表明,如果干预措施每QALY的成本达到或低于指定的临界值就进行投资。
多标准框架通过考虑决策者的价值权衡来扩展决策分析,然后生成一个综合指标来总结投资选项的绩效。这种评估是基于决策者提供的权重,在所有选定的价值维度上进行的,但这种灵活性是有代价的。迄今为止,没有一种方法被广泛接受来建议使用多属性模型进行多少投资(如何确定预算约束)。此外,对于为多属性价值提升支付意愿的衡量,也没有达成共识的方法。我们的论文提出了一条前进的道路。
基于现有的对QALY支付意愿的美元估计,我们的概念为多标准价值指标创建了一个可比的临界值。我们提出的方法根据QALY成分在总指标中所占的比例,按比例扩大每QALY可接受的成本。因此,可以推断出每QALY成本的商定价值,以考虑每种干预措施的非QALY属性所创造的额外价值。
使用我们提出的方法,每QALY临界值可以作为在多标准框架中创建资源分配临界值的基准。