Sorbonne Paris Cité, Epigenetics and Cell Fate, UMR 7216 CNRS, Université Paris Diderot, Paris, France.
Clin Genet. 2019 Feb;95(2):210-220. doi: 10.1111/cge.13480. Epub 2018 Dec 18.
Alterations in epigenetic landscapes are hallmarks of many complex human diseases, yet, it is often challenging to assess the underlying mechanisms and causal link with clinical manifestations. In this regard, monogenic diseases that affect actors of the epigenetic machinery are of considerable interest to learn more about the etiology of complex traits. Spectacular breakthroughs in medical genetics are largely the result of advances in genome-wide approaches to identify genomic and epigenomic alterations in patients. These approaches have enabled the identification of an ever-increasing number of hereditary disorders caused by defects in the establishment of epigenetic marks early during development or in the perpetuation of such marks at later stages. We focus our review on particular cases where DNA methylation landscapes are altered at the genome scale, whether it is a direct consequence of mutations in DNA methyltransferases (DNMT) or that it reflects initial alterations of chromatin states or guiding factors caused by mutations in chromatin modifiers or transcription factors. Collectively, increased knowledge of these rare diseases will add to our understanding of the genetic determinants of DNA methylation in humans. Moreover, investigating how perturbations to these determinants affect genome function has far-reaching potential to understand various complex human diseases.
表观遗传景观的改变是许多复杂人类疾病的标志,但评估其潜在机制与临床表现之间的因果关系通常具有挑战性。在这方面,影响表观遗传机制因子的单基因疾病对于了解复杂表型的病因学非常有意义。医学遗传学的惊人突破在很大程度上是由于全基因组方法的进步,这些方法可用于识别患者的基因组和表观遗传改变。这些方法已经能够鉴定出越来越多的遗传性疾病,这些疾病是由于在发育早期建立表观遗传标记或在后期维持这些标记时发生的缺陷引起的。我们重点关注在基因组范围内改变 DNA 甲基化景观的特殊情况,无论是由于 DNA 甲基转移酶 (DNMT) 的突变直接导致,还是反映由染色质修饰因子或转录因子突变引起的染色质状态或指导因子的初始改变。总之,对这些罕见疾病的深入了解将有助于我们理解人类 DNA 甲基化的遗传决定因素。此外,研究这些决定因素的干扰如何影响基因组功能具有深远的潜力,可以帮助我们理解各种复杂的人类疾病。