Mao Wenxin, Hall Christopher R, Chesman Anthony S R, Forsyth Craig, Cheng Yi-Bing, Duffy Noel W, Smith Trevor A, Bach Udo
Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia.
Australian Research Council Centre of Excellence in Exciton Science, Australia.
Angew Chem Int Ed Engl. 2019 Feb 25;58(9):2893-2898. doi: 10.1002/anie.201810193. Epub 2019 Jan 18.
Mixed organolead halide perovskites (MOHPs), CH NH Pb(Br I ) , have been shown to undergo phase segregation into iodide-rich domains under illumination, which presents a major challenge to their development for photovoltaic and light-emitting devices. Recent work suggested that phase-segregated domains are localized at crystal boundaries, driving investigations into the role of edge structure and the growth of larger crystals with reduced surface area. Herein, a method for growing large (30×30×1 μm ) monocrystalline MAPb(Br I ) single crystals is presented. The direct visualization of the growth of nanocluster-like I-rich domains throughout the entire crystal revealed that grain boundaries are not required for this transformation. Narrowband fluorescence imaging and time-resolved spectroscopy provided new insight into the nature of the phase-segregated domains and the collective impact on the optoelectronic properties.
混合有机铅卤化物钙钛矿(MOHPs),即CH₃NH₃Pb(BrₓI₁₋ₓ)₃,已被证明在光照下会发生相分离,形成富碘区域,这对其在光伏和发光器件中的发展构成了重大挑战。最近的研究表明,相分离区域位于晶体边界,这促使人们对边缘结构的作用以及具有减小表面积的更大晶体的生长进行研究。在此,我们展示了一种生长大尺寸(30×30×1 μm³)单晶MAPb(BrₓI₁₋ₓ)₃的方法。对整个晶体中纳米团簇状富碘区域生长的直接观察表明,这种转变并不需要晶界。窄带荧光成像和时间分辨光谱为相分离区域的性质以及对光电性质的综合影响提供了新的见解。