Hallock Michael J, Greenwood Alexander I, Wang Yan, Morrissey James H, Tajkhorshid Emad, Rienstra Chad M, Pogorelov Taras V
School of Chemical Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.
Department of Chemistry , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.
Biochemistry. 2018 Dec 18;57(50):6897-6905. doi: 10.1021/acs.biochem.8b01069. Epub 2018 Dec 4.
The plasma membrane of the cell is a complex, tightly regulated, heterogeneous environment shaped by proteins, lipids, and small molecules. Ca ions are important cellular messengers, spatially separated from anionic lipids. After cell injury, disease, or apoptotic events, anionic lipids are externalized to the outer leaflet of the plasma membrane and encounter Ca, resulting in dramatic changes in the plasma membrane structure and initiation of signaling cascades. Despite the high chemical and biological significance, the structures of lipid-Ca nanoclusters are still not known. Previously, we demonstrated by solid-state nuclear magnetic resonance (NMR) spectroscopy that upon binding to Ca, individual phosphatidylserine lipids populate two distinct yet-to-be-characterized structural environments. Here, we concurrently employ extensive all-atom molecular dynamics (MD) simulations with our accelerated membrane mimetic and detailed NMR measurements to identify lipid-Ca nanocluster conformations. We find that major structural characteristics of these nanoclusters, including interlipid pair distances and chemical shifts, agree with observable NMR parameters. Simulations reveal that lipid-ion nanoclusters are shaped by two characteristic, long-lived lipid structures induced by divalent Ca. Using ab initio quantum mechanical calculations of chemical shifts on MD-captured lipid-ion complexes, we show that computationally observed conformations are validated by experimental NMR data. Both NMR measurements of diluted specifically labeled lipids and MD simulations reveal that the basic structural unit that reshapes the membrane is a Ca-coordinated phosphatidylserine tetramer. Our combined computational and experimental approach presented here can be applied to other complex systems in which charged membrane-active molecular agents leave structural signatures on lipids.
细胞的质膜是一个复杂、严格调控且异质的环境,由蛋白质、脂质和小分子塑造而成。钙离子是重要的细胞信使,与阴离子脂质在空间上分离。在细胞损伤、疾病或凋亡事件后,阴离子脂质会外化至质膜的外小叶并与钙离子相遇,导致质膜结构发生显著变化并引发信号级联反应。尽管具有高度的化学和生物学意义,但脂质 - 钙纳米簇的结构仍然未知。此前,我们通过固态核磁共振(NMR)光谱证明,与钙离子结合后,单个磷脂酰丝氨酸脂质会占据两种不同但尚未表征的结构环境。在这里,我们同时采用广泛的全原子分子动力学(MD)模拟以及我们加速的膜模拟方法和详细的NMR测量来确定脂质 - 钙纳米簇的构象。我们发现这些纳米簇的主要结构特征,包括脂质间距离和化学位移,与可观测的NMR参数一致。模拟结果表明,脂质 - 离子纳米簇由二价钙离子诱导产生的两种特征性、长寿命脂质结构塑造而成。通过对MD捕获的脂质 - 离子复合物进行化学位移的从头算量子力学计算,我们表明计算得到的构象得到了实验NMR数据的验证。对稀释的特异性标记脂质的NMR测量和MD模拟均表明,重塑膜的基本结构单元是钙配位的磷脂酰丝氨酸四聚体。我们在此提出的计算和实验相结合的方法可应用于其他复杂系统,其中带电荷的膜活性分子试剂会在脂质上留下结构特征。