Department of Oncology, Aarhus University Hospital, Aarhus, Denmark. Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland. Author to whom any correspondence should be addressed.
Phys Med Biol. 2018 Nov 20;63(22):225021. doi: 10.1088/1361-6560/aaeae9.
This study validates a method of fast motion-including dose reconstruction for proton pencil beam scanning in the liver. The method utilizes a commercial treatment planning system (TPS) and calculates the delivered dose for any translational 3D target motion. Data from ten liver patients previously treated with photon radiotherapy with intrafraction tumour motion monitoring were used. The dose reconstruction method utilises an in-house developed program to incorporate beam's-eye-view tumour motion by shifting each spot in the opposite direction of the tumour and in-depth motion as beam energy changes for each spot. The doses are then calculated on a single CT phase in the TPS. Two aspects of the dose reconstruction were assessed: (1) The accuracy of reconstruction, by comparing dose reconstructions created using 4DCT motion with ground truth doses obtained by calculating phase specific doses in all 4DCT phases and summing up these partial doses. (2) The error caused by assuming 4DCT motion, by comparing reconstructions with 4DCT motion and actual tumour motion. The CTV homogeneity index (HI) and the root-mean-square (rms) dose error for all dose points receiving >70%, >80% and >90% of the prescribed dose were calculated. The dose reconstruction resulted in mean (range) absolute CTV HI errors of 1.0% (0.0-3.0)% and rms dose errors of 2.5% (1.0%-5.3%), 2.1% (0.9%-4.5%), and 1.8% (0.7%-3.7%) for >70%, >80% and >90% doses, respectively, when compared with the ground truth. The assumption of 4DCT motion resulted in mean (range) absolute CTV HI errors of 5.9% (0.0-15.0)% and rms dose errors of 6.3% (3.9%-12.6%), 5.9% (3.4%-12.5%), and 5.4% (2.6%-12.1%) for >70%, >80% and >90% doses, respectively. The investigated method allows tumour dose reconstruction with the actual tumour motion and results in significantly smaller dose errors than those caused by assuming that motion at treatment is identical to the 4DCT motion.
本研究验证了一种用于质子铅笔束扫描肝脏中快速运动(包括剂量重建)的方法。该方法利用商业治疗计划系统(TPS),并计算任何平移 3D 靶运动的传递剂量。使用了十位先前接受过光子放射治疗且具有分次内肿瘤运动监测的肝癌患者的数据。剂量重建方法利用内部开发的程序,通过将每个点沿肿瘤相反方向和深度运动转移来整合视场肿瘤运动,同时根据每个点的束能变化来进行运动。然后在 TPS 的单个 CT 相位上计算剂量。评估了剂量重建的两个方面:(1)通过比较使用 4DCT 运动创建的剂量重建与通过计算所有 4DCT 相位的特定相位剂量并将这些部分剂量相加获得的地面真实剂量来评估重建的准确性。(2)通过比较 4DCT 运动和实际肿瘤运动的重建来评估假设 4DCT 运动引起的误差。计算了所有接受超过 70%、80%和 90%处方剂量的剂量点的CTV 均匀性指数(HI)和均方根(rms)剂量误差。剂量重建导致 CTV HI 平均(范围)绝对值误差分别为 1.0%(0.0-3.0)%和 rms 剂量误差为 2.5%(1.0%-5.3%)、2.1%(0.9%-4.5%)和 1.8%(0.7%-3.7%),分别为超过 70%、80%和 90%的剂量,与地面真实值相比。假设 4DCT 运动导致 CTV HI 平均(范围)绝对值误差分别为 5.9%(0.0-15.0)%和 rms 剂量误差为 6.3%(3.9%-12.6%)、5.9%(3.4%-12.5%)和 5.4%(2.6%-12.1%),分别为超过 70%、80%和 90%的剂量,与地面真实值相比。所研究的方法允许使用实际肿瘤运动进行肿瘤剂量重建,并且导致的剂量误差明显小于假设治疗时的运动与 4DCT 运动相同所导致的误差。