División de Ingenierías, Universidad de Guanajuato, Carr. Salamanca-Valle de Santiago km 3.5+1.8, 36885, Salamanca, Guanajuato, México.
Departamento de Ciencias Computacionales, Universidad de Guadalajara, Av.Revolución 1500, Guadalajara, Jalisco, México.
Biomed Eng Online. 2018 Nov 20;17(Suppl 1):134. doi: 10.1186/s12938-018-0565-6.
Laboratory rats play a critical role in research because they provide a biological model that can be used for evaluating the affectation of diseases and injuries, and for the evaluation of the effectiveness of new drugs and treatments. The analysis of locomotion in laboratory rats facilitates the understanding of motor defects in many diseases, as well as the damage and recovery after peripheral and central nervous system injuries. However, locomotion analysis of rats remains a great challenge due to the necessity of labor intensive manual annotations of video data required to obtain quantitative measurements of the kinematics of the rodent extremities. In this work, we present a method that is based on the use of a bio-inspired algorithm that fits a kinematic model of the hind limbs of rats to binary images corresponding to the segmented marker of images corresponding to the rat's gait. The bio-inspired algorithm combines a genetic algorithm for a group of the optimization variables with a local search for a second group of the optimization variables.
Our results indicate the feasibility of employing the proposed approach for the automatic annotation and analysis of the locomotion patterns of the posterior extremities of laboratory rats.
The adjustment of the hind limb kinematic model to markers of the video frames corresponding to rat's gait sequences could then be used to analyze the motion patterns during the steps, which, in turn, can be useful for performing quantitative evaluations of the effect of lesions and treatments on rats models.
实验室大鼠在研究中起着至关重要的作用,因为它们提供了一种生物学模型,可用于评估疾病和损伤的影响,以及评估新药和治疗方法的有效性。实验室大鼠的运动分析有助于理解许多疾病中的运动缺陷,以及外周和中枢神经系统损伤后的损伤和恢复。然而,由于需要对视频数据进行人工注释,以获取啮齿动物四肢运动学的定量测量值,因此大鼠的运动分析仍然是一个巨大的挑战。在这项工作中,我们提出了一种基于仿生算法的方法,该方法可以将大鼠后肢的运动学模型拟合到与大鼠步态相对应的分割标记的二进制图像上。仿生算法将一组优化变量的遗传算法与第二组优化变量的局部搜索相结合。
我们的结果表明,该方法可用于自动注释和分析实验室大鼠后肢的运动模式。
然后,可以将后肢运动学模型调整到与大鼠步态序列相对应的视频帧标记,以分析步幅中的运动模式,这反过来又可用于对大鼠模型的损伤和治疗效果进行定量评估。