Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
mBio. 2018 Nov 20;9(6):e01524-18. doi: 10.1128/mBio.01524-18.
Metals are a limiting resource for pathogenic bacteria and must be scavenged from host proteins. Hemoglobin provides the most abundant source of iron in the human body and is required by several pathogens to cause invasive disease. However, the consequences of hemoglobin evolution for bacterial nutrient acquisition remain unclear. Here we show that the α- and β-globin genes exhibit strikingly parallel signatures of adaptive evolution across simian primates. Rapidly evolving sites in hemoglobin correspond to binding interfaces of IsdB, a bacterial hemoglobin receptor harbored by pathogenic Using an evolution-guided experimental approach, we demonstrate that the divergence between primates and staphylococcal isolates governs hemoglobin recognition and bacterial growth. The reintroduction of putative adaptive mutations in α- or β-globin proteins was sufficient to impair binding, providing a mechanism for the evolution of disease resistance. These findings suggest that bacterial hemoprotein capture has driven repeated evolutionary conflicts with hemoglobin during primate descent. During infection, bacteria must steal metals, including iron, from the host tissue. Therefore, pathogenic bacteria have evolved metal acquisition systems to overcome the elaborate processes mammals use to withhold metal from pathogens. uses IsdB, a hemoglobin receptor, to thieve iron-containing heme from hemoglobin within human blood. We find evidence that primate hemoglobin has undergone rapid evolution at protein surfaces contacted by IsdB. Additionally, variation in the hemoglobin sequences among primates, or variation in IsdB of related staphylococci, reduces bacterial hemoglobin capture. Together, these data suggest that has evolved to recognize human hemoglobin in the face of rapid evolution at the IsdB binding interface, consistent with repeated evolutionary conflicts in the battle for iron during host-pathogen interactions.
金属是致病菌的有限资源,必须从宿主蛋白中获取。血红蛋白是人体中铁的最丰富来源,是几种致病菌引起侵袭性疾病所必需的。然而,血红蛋白进化对细菌营养物质获取的影响仍不清楚。在这里,我们展示了α-和β-球蛋白基因在灵长类动物中表现出惊人的平行适应性进化特征。血红蛋白中快速进化的位点与 IsdB 相匹配,IsdB 是一种细菌血红蛋白受体,由致病性细菌 使用进化指导的实验方法,我们证明了血红蛋白的进化在灵长类动物和葡萄球菌分离株之间的差异,这决定了血红蛋白的识别和细菌的生长。在α-或β-球蛋白蛋白中引入假定的适应性突变足以损害 结合,为疾病抗性的进化提供了一种机制。这些发现表明,在灵长类动物的进化过程中,细菌的血红素蛋白捕获与血红蛋白之间发生了反复的进化冲突。在感染期间,细菌必须从宿主组织中窃取包括铁在内的金属。因此,致病菌已经进化出金属获取系统,以克服哺乳动物用来阻止病原体获取金属的复杂过程。 利用 IsdB,一种血红蛋白受体,从人血液中的血红蛋白中窃取含铁的血红素。我们发现证据表明,在 IsdB 接触的蛋白质表面上,灵长类动物的血红蛋白经历了快速进化。此外,灵长类动物血红蛋白序列的变异或相关葡萄球菌 IsdB 的变异会降低细菌对血红蛋白的捕获。总之,这些数据表明, 已经进化到可以识别人类血红蛋白,尽管 IsdB 结合界面的快速进化,但在宿主-病原体相互作用中为铁而进行的反复进化冲突中,仍能保持这种识别。