Princeton Neuroscience Institute.
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125.
J Neurosci. 2019 Jan 9;39(2):333-352. doi: 10.1523/JNEUROSCI.1889-18.2018. Epub 2018 Nov 20.
The selection of behaviorally relevant information from cluttered visual scenes (often referred to as "attention") is mediated by a cortical large-scale network consisting of areas in occipital, temporal, parietal, and frontal cortex that is organized into a functional hierarchy of feedforward and feedback pathways. In the human brain, little is known about the temporal dynamics of attentional processing from studies at the mesoscopic level of electrocorticography (ECoG), that combines millisecond temporal resolution with precise anatomical localization of recording sites. We analyzed high-frequency broadband responses (HFB) responses from 626 electrodes implanted in 8 epilepsy patients who performed a spatial attention task. Electrode locations were reconstructed using a probabilistic atlas of the human visual system. HFB responses showed high spatial selectivity and tuning, constituting ECoG response fields (RFs), within and outside the topographic visual system. In accordance with monkey physiology studies, both RF widths and onset latencies increased systematically across the visual processing hierarchy. We used the spatial specificity of HFB responses to quantitatively study spatial attention effects and their temporal dynamics to probe a hierarchical top-down model suggesting that feedback signals back propagate the visual processing hierarchy. Consistent with such a model, the strengths of attentional modulation were found to be greater and modulation latencies to be shorter in posterior parietal cortex, middle temporal cortex and ventral extrastriate cortex compared with early visual cortex. However, inconsistent with such a model, attention effects were weaker and more delayed in anterior parietal and frontal cortex. In the human brain, visual attention has been predominantly studied using methods with high spatial, but poor temporal resolution such as fMRI, or high temporal, but poor spatial resolution such as EEG/MEG. Here, we investigate temporal dynamics and attention effects across the human visual system at a mesoscopic level that combines precise spatial and temporal measurements by using electrocorticography in epilepsy patients performing a classical spatial attention task. Electrode locations were reconstructed using a probabilistic atlas of the human visual system, thereby relating them to topography and processing hierarchy. We demonstrate regional differences in temporal dynamics across the attention network. Our findings do not fully support a top-down model that promotes influences on visual cortex by reversing the processing hierarchy.
从杂乱的视觉场景中选择与行为相关的信息(通常称为“注意力”)是由一个包含枕叶、颞叶、顶叶和额叶区域的皮质大规模网络介导的,该网络组织成一个前馈和反馈通路的功能层次结构。在人类大脑中,从脑电描记术(ECoG)的中观水平研究中,对注意力处理的时间动态知之甚少,ECoG 结合了毫秒级的时间分辨率和记录部位的精确解剖定位。我们分析了 8 名癫痫患者在执行空间注意力任务时从 626 个植入电极中获得的高频宽带(HFB)响应。使用人类视觉系统的概率图谱重建电极位置。HFB 响应表现出高度的空间选择性和调谐性,构成了 ECoG 响应场(RF),在拓扑视觉系统内外。与猴子生理学研究一致,RF 宽度和起始潜伏期都沿着视觉处理层次结构系统地增加。我们使用 HFB 响应的空间特异性来定量研究空间注意力效应及其时间动态,以探测一个自上而下的分层模型,该模型表明反馈信号沿视觉处理层次结构反向传播。与这种模型一致,与早期视觉皮层相比,在后顶叶皮层、中颞叶皮层和腹侧外纹状皮层中发现注意力调制的强度更大,调制潜伏期更短。然而,与这种模型不一致的是,在前顶叶和额叶皮层中,注意力效应较弱且延迟较大。在人类大脑中,视觉注意力主要使用具有高空间分辨率但时间分辨率差的方法进行研究,例如 fMRI,或具有高时间分辨率但空间分辨率差的方法,例如 EEG/MEG。在这里,我们在癫痫患者执行经典空间注意力任务时使用 ECoG 研究了在结合了精确空间和时间测量的中观水平上整个视觉系统的时间动态和注意力效应。使用人类视觉系统的概率图谱重建电极位置,从而将它们与拓扑结构和处理层次结构相关联。我们证明了注意力网络中跨区域的时间动态差异。我们的发现不完全支持一个自上而下的模型,该模型通过反转处理层次结构来促进对视觉皮层的影响。