Suppr超能文献

在液态金属界面上定制原子层生长。

Tailoring atomic layer growth at the liquid-metal interface.

机构信息

Division of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B3001, Leuven, Belgium.

Division of Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200 F, B3001, Leuven, Belgium.

出版信息

Nat Commun. 2018 Nov 20;9(1):4889. doi: 10.1038/s41467-018-07381-w.

Abstract

Engineering atomic structures at metal surfaces represents an important step in the development of novel nanomaterials and nanodevices, but relies predominantly on atomic/molecular beam epitaxy under ultrahigh vacuum conditions, where controlling the deposition processes remains challenging. By using solution-borne nanosized gold clusters as a precursor, here we develop a wet deposition protocol to the fabrication of atomically flat gold nanoislands, so as to utilize the dynamic exchange of surface-active molecules at the liquid-metal interface for manipulating the growth kinetics of ultrathin metallic nanostructures. While remarkable shape and size selection of gold nanoislands is observed, our experimental and theoretical investigations provide compelling evidences that organic adsorbates can impart a bias to the island orientation by preferred adsorption and alignment and intervene in the assembly and disassembly of adatom islands by complexing with Au adatoms. This approach offers a simple solution to regulate atomic layer growth of metals at ambient conditions.

摘要

在金属表面构建原子结构是开发新型纳米材料和纳米器件的重要步骤,但主要依赖于超高真空条件下的原子/分子束外延,在这种条件下,控制沉积过程仍然具有挑战性。本文使用溶液纳米金簇作为前体,开发了一种湿沉积方案来制备原子级平坦的金纳米岛,以便利用液态金属界面上表面活性分子的动态交换来控制超薄金属纳米结构的生长动力学。虽然观察到金纳米岛具有显著的形状和尺寸选择性,但我们的实验和理论研究提供了有力的证据,证明有机吸附物可以通过优先吸附和定向赋予岛取向以偏差,并通过与 Au adatoms 络合来干预吸附原子岛的组装和拆卸。该方法为在环境条件下调控金属的原子层生长提供了一种简单的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42b1/6244000/77801a3488d2/41467_2018_7381_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验