Institut Jacques Monod, UMR7592 CNRS Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
Sci Rep. 2018 Nov 20;8(1):17121. doi: 10.1038/s41598-018-35190-0.
The spatial organization of cells depends on coordination between cytoskeletal systems and intracellular organelles. The Arf1 small G protein and its activator GBF1 are important regulators of Golgi organization, maintaining its morphology and function. Here we show that GBF1 and its substrate Arf1 regulate the spatial organization of mitochondria in a microtubule-dependent manner. Miro is a mitochondrial membrane protein that interacts through adaptors with microtubule motor proteins such as cytoplasmic dynein, the major microtubule minus end directed motor. We demonstrate a physical interaction between GBF1 and Miro, and also between the active GTP-bound form of Arf1 and Miro. Inhibition of GBF1, inhibition of Arf1 activation, or overexpression of Miro, caused a collapse of the mitochondrial network towards the centrosome. The change in mitochondrial morphology upon GBF1 inhibition was due to a two-fold increase in the time engaged in retrograde movement compared to control conditions. Electron tomography revealed that GBF1 inhibition also resulted in larger mitochondria with more complex morphology. Miro silencing or drug inhibition of cytoplasmic dynein activity blocked the GBF1-dependent repositioning of mitochondria. Our results show that blocking GBF1 function promotes dynein- and Miro-dependent retrograde mitochondrial transport along microtubules towards the microtubule-organizing center, where they form an interconnected network.
细胞的空间组织依赖于细胞骨架系统和细胞内细胞器之间的协调。Arf1 小 G 蛋白及其激活因子 GBF1 是高尔基体组织的重要调节剂,维持其形态和功能。在这里,我们显示 GBF1 和它的底物 Arf1 以微管依赖性的方式调节线粒体的空间组织。Miro 是一种线粒体膜蛋白,通过衔接蛋白与微管动力蛋白相互作用,如细胞质动力蛋白,这是主要的微管负端导向动力蛋白。我们证明了 GBF1 和 Miro 之间存在物理相互作用,以及活性 GTP 结合形式的 Arf1 和 Miro 之间存在物理相互作用。GBF1 的抑制、Arf1 激活的抑制或 Miro 的过表达,导致线粒体网络向中心体坍塌。GBF1 抑制引起的线粒体形态变化是由于与对照条件相比,逆行运动的时间增加了一倍。电子断层扫描显示,GBF1 抑制还导致线粒体具有更复杂形态的更大线粒体。Miro 沉默或细胞质动力蛋白活性的药物抑制阻止了 GBF1 依赖的线粒体重定位。我们的结果表明,阻断 GBF1 功能促进了沿微管向微管组织中心的动力蛋白和 Miro 依赖的逆行线粒体运输,在那里它们形成一个相互连接的网络。